Abstract:Stationary energy storage technology has become an effective measure to improve energy saving and power supply quality of urban rail transit. Technical and economic evaluation is an important issue to be solved in the engineering application of energy storage technology. Based on the review of the power-capacity constrained configuration method (P&C-Method) and capacity constrained configuration method (C-Method) of supercapacitor array for urban rail transit braking energy recovery, the comprehensive technical and economic evaluation criteria and a net income mathematical model of the stationary supercapacitor energy storage system was established. The technical economy of the above two typical configuration methods is compared and analyzed. The case study shows that: Although the investment cost of P&C-Method is higher than that of C-Method, the cost recovery period of two configuration methods is similar, the energy-saving performance of the power-capacity constraint configuration method is better than that of the capacity constraint configuration method, within the whole life cycle. The power-capacity constraint configuration method has better comprehensive technical and economic performance and can obtain greater economic benefits. It is worthy of priority in practical engineering.
沈小军, 曹戈. 城轨交通制动能量回收超级电容储能阵列配置方法对比分析[J]. 电工技术学报, 2020, 35(23): 4988-4997.
Shen Xiaojun, Cao Ge. Comparative Analysis on Configuration Methods of Supercapacitor Array for Braking Energy Recovery of Urban Rail Transit. Transactions of China Electrotechnical Society, 2020, 35(23): 4988-4997.
[1] Wandelt S, Wang Zezhou, Sun Xiaoqian.Worldwide railway skeleton network: extraction methodology and preliminary analysis[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(8): 2206-2216. [2] Khodaparastan M, Mohamed A A, Brandauer W.Recuperation of regenerative braking energy in electric rail transit systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 2831-2847. [3] Yang Zhihong, Yang Zhongping, Xia Hun, et al.Brake voltage following control of supercapacitor-based energy storage systems in metro considering train operation state[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6751-6761. [4] Lin Sheng, Huang Di, Wang Aimin, et al.Research on the regeneration braking energy feedback system of urban rail transit[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7329-7339. [5] 夏欢, 杨中平, 杨志鸿, 等. 基于列车运行状态的城轨超级电容储能装置控制策略[J]. 电工技术学报, 2017, 32(21):20-27. Xia Huan, Yang Zhongping, Yang Zhonghong, et, al. Control strategy of supercapacitor energy storage system for urban rail transit based on operating status of trains[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 20-27. [6] 马茜, 郭昕, 罗培, 等. 基于超级电容储能的新型铁路功率调节器协调控制策略设计[J]. 电工技术学报, 2019, 34(4): 133-144. Ma Qian, Guo Xin, Luo Pei, et al.Coordinated control strategy design of new type railway power regulator based on super capacitor energy storage[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 133-144. [7] 李建林, 袁晓冬, 郁正纲, 等. 利用储能系统提升电网电能质量研究综述[J].电力系统自动化, 2019, 43(8): 15-24. Li Jianlin, Yuan Xiaodong, Yu Zhenggang, et al.Comments on power quality enhancement research for power grid by energy storage system[J]. Automation of Electric Power Systems, 2019, 43(8): 15-24. [8] Sengor I, Kilickiran H C, Akdemir H, et al.Energy management of a smart railway station considering regenerative braking and stochastic behaviour of ESS and PV generation[J]. IEEE Transactions on Sustainable Energy, 2018, 9(3): 1041-1050. [9] 王彬, 杨中平, 林飞, 等. 基于节能稳压的地面式超级电容储能系统容量配置优化研究[J]. 铁道学报, 2016, 38(6): 45-52. Wang Bin, Yang Zhongping, Lin Fei, et al.Study on optimization of capacity configuration of stationary super capacitor storage system for improving energy efficiency and voltage profile[J]. Journal of the China Railway Society, 2016, 38(6): 45-52. [10] 沈小军, 陈胜, 张翼, 等. 考虑功率-容量约束的城市轨道交通车载超级电容阵列配置方法[J]. 中国铁道科学, 2013, 34(2): 118-124. Shen Xiaojun, Chen Sheng, Zhang Yi, et al.Configuration method for the onboard super-capacitor bank of urban rail transit considering power and capacity constraints[J]. China Railway Science, 2013, 34(2): 118-124. [11] Xia Hua, Chen Huaixin, Yang Zhongping, et al.Optimal energy management, location and size for stationary energy storage system in a metro line based on genetic algorithm[J]. Energies, 2015, 8(10): 11618-11640. [12] 赵亚杰, 夏欢, 王俊兴, 等. 基于动态阈值调节的城轨交通超级电容储能系统控制策略研究[J]. 电工技术学报, 2015, 30(14): 427-433. Zhao Yajie, Xia Huan, Wang Junxing, et al.Research on dynamic threshold adjustment based control strategy of supercapacitor energy storage system in urban rail transit[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 427-433. [13] Ceraolo M, Lutzemberger M.Stationary and on-board storage systems to enhance energy and cost efficiency of tramways[J]. Journal of Power Sources, 2014, 264: 128-139. [14] 王彬. 城轨交通地面式超级电容储能系统容量配置优化方法研究[D]. 北京: 北京交通大学, 2015. [15] 诸斐琴, 杨中平, 林飞, 等. 城轨交通牵引供电系统参数与储能系统容量配置综合优化[J]. 电工技术学报, 2019, 34(3): 135-144. Zhu Feiqin, Yang Zhongping, Lin Fei, et al.Synthetic optimization of traction power parameters and energy storage systems in urban rail transit[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 135-144. [16] Shen Xiaojun, Chen Sheng, Li Guojie, et al.Configure methodology of onboard supercapacitor array for recycling regenerative braking energy of URT vehicles[J]. IEEE Transactions on Industry Applications, 2013, 49(4): 1678-1686. [17] Arboleya P, Mohamed B, El-Sayed I.DC railway simulation including controllable power electronic and energy storage devices[J]. IEEE Transactions on Power Systems, 2018, 33(5): 5319-5329. [18] 余波, 梁锐, 蒲亦非, 等. 超级电容器恒流充电的时域分数阶电路模型[J]. 电工技术学报, 2019, 34(17): 3533-3541. Yu Bo, Liang Rui, Pu Yifei, et al.Time-domain fractional circuit model for constant current[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3533-3541. [19] Ahmadi S, Dastfan A, Assili M.Energy saving in metro systems: Simultaneous optimization of stationary energy storage systems and speed profiles[J]. Journal of Rail Transport Planning & Management, 2018, 8(1):78-90. [20] Shen Xiaojun, Cao Ge, Lie T.Modeling and continuous co-simulation of URT traction electric network-trains with OESS[J]. Simulation Modelling Practice and Theory, 2020, 98: 1-21. [21] 沈小军, 曹戈. 地铁车辆再生制动能量利用率影响因素[J]. 同济大学学报: 自然科学版, 2019, 47(11): 1648-1655. Shen Xiaojun, Cao Ge.Factors influencing the utilization rate of regenerative braking energy of urban rail transit vehicles[J]. Journal of Tongji University: Natural Science, 2019, 47(11): 1648-1655. [22] 沈小军, 曹戈. 基于压阻数的城轨交通地面储能系统选址方法[J].中国铁道科学, 2020, 41(1): 99-107. Shen Xiaojun, Cao Ge.A site selection method of SESS for urban rail transit based on number of low voltage and braking resistor[J]. China Railway Science, 2020, 41(1): 99-107. [23] Zhang Dong, You Peiyu, Liu Fan, et al.Regulating cost for renewable energy integration in power grids[J]. Global Energy Interconnection, 2018, 1(5): 544-551. 张栋, 游沛羽, 刘帆, 等. 可再生能源并网运行的调控成本研究[J]. 全球能源互联网(英文), 2018, 1(5) : 544-551.