Abstract:The installation of stationarysupercapacitor energy storage systems in urban rail transit will effectively recover the regenerative braking energy of the trains and reduce the energy consumption of the system. The substations, powering/brake trains and energy storage systems(ESSs)conduct energy interactions in real time through traction networks, andconstitute a complex multi-energy coupling system. Therefore, in order to improve the overall energy efficiency and reduce investment costs, a synthetic optimization method for power system parameters and ESS capacity configuration is proposed in this paper. Firstly, the equivalent circuit modelsfor different train operation scenarios are established, and the influence of no-load voltageand the starting voltage of the braking resistor on the energy transmission efficiency and effective distance between the substations, trains and ESSsis analyzed; Secondly, a multi-objective optimization problem considering energy consumption and investment costis established, and the NSGA-II optimization algorithm is combined with the traction power flow calculation to solve the problem. Finally, a case study based on Beijing Metro Batong line is presented, and the pareto optimal solution is obtained with thesynthetic optimization method. Results show that in comparison with ESS-only optimization, the energy saving rate is effectively improved with the synthetic optimization.
诸斐琴, 杨中平, 林飞, 信月. 城轨交通牵引供电系统参数与储能系统容量配置综合优化[J]. 电工技术学报, 2019, 34(3): 579-588.
Zhu Feiqin, Yang Zhongping, Lin Fei, XinYue. Synthetic Optimization of Traction Power Parameters and Energy Storage Systems in Urban Rail Transit. Transactions of China Electrotechnical Society, 2019, 34(3): 579-588.
[1] Ratniyomchai T, Tricoli P, Hillmansen S.Recent developments and applications of energy storage devices in electrified railways[J]. IET Electrical Systems in Transportation, 2014, 4(1): 9-20. [2] Vazquez S, Lukic S M, Galvan E, et al.Energy storage systems for transport and grid applications[J]. IEEE Transactions on Industrial Electronics, 2010, 57(12): 3881-3895. [3] Devaux F O, Tackoen X. Overview of braking energy recovery technologies in the public transport field[R/OL]. 2011.http://www.tickettokyoto.eu. [4] Lee H, Song J, Lee H, et al.Capacity optimization of the supercapacitor energy storages on DC railway system using a railway powerflow algorithm[J]. International Journal of Innovative Computing, Information and Control, 2011, 7(5): 2739-2753. [5] 李建林,郭斌琪,牛萌,等.风光储系统储能容量优化配置策略[J].电工技术学报,2018, 33(6):1189-1196. Li Jianlin, Guo Binqi, Niu Meng, et al.Optimal configuration strategy of energy storage capacity in wind/PV/storage hybrid system[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1189-1196. [6] 雷琪,苗世洪,郭宝甫,等.基于层次分析和改进逼近理想解法的分层储能系统综合评估[J].电力系统保护与控制, 2017, 45(3):13-19. Lei Qi, Miao Shihong, Guo Baofu, et al.Comprehensive evaluation of hierarchical storage system based on analytic hierarchy process and improved technique for order preference by similarity to ideal solution[J]. Power System Protection and Control, 2017, 45(3): 13-19. [7] Teymourfar R, Asaei B, Iman-Eini H.Stationary super-capacitor energy storage system to save regenerative braking energy in a metro line[J]. Energy Conversion and Management, 2012, 56: 206-214. [8] Barrero R, Tackoen X, Van Mierlo J.Improving energy efficiency in public transport: Stationary supercapacitor based energy storage systems for a metro network[C]//Vehicle Power and Propulsion Conference, IEEE, 2008: 1-8. [9] Chang H B.A simulation study of installation locations and capacity of regenerative absorption inverters in DC 1500 V electric railways system[J]. Simulation Modelling Practice & Theory, 2009, 17(5):829-838. [10] Xia Huan, Chen Huaixin, Yang Zhihong, et al.Optimal energy management, location and size for stationary energy storage system in a metro line based on genetic algorithm[J]. Energies, 2015, 8(10):11618-11640. [11] González-Gil A, Palacin R, Batty P.Sustainable urban rail systems: strategies and technologies for optimal management of regenerative braking energy[J]. Energy Conversion and Management, 2013, 75: 374-388. [12] Álvaro JL, Pecharromán R R, Fernández-Cardador A, et al.Assessment of energy-saving techniques in direct-current-electrified mass transit systems[J]. Transportation Research Part C Emerging Technologies, 2014, 38(1):85-100. [13] 赵亚杰,夏欢,王俊兴,等.基于动态阈值调节的城轨交通超级电容储能系统控制策略研究[J].电工技术学报,2015,30(14):427-433. Zhao Yajie, Xia Huan, Wang Junxing, et al.Research on dynamic threshold adjustment based control strategy of supercapacitor energy storage system in urban rail transit[J]. Transactions of China Electrotechnical Society, 2015,30(14):427-433. [14] Dominguez M, Fernandez-Cardador A, Cucala A P, et al.Energy savings in metropolitan railway substations through regenerative energy recovery and optimal design of ATO speed profiles[J]. IEEE Transactions on Automation Science & Engineering, 2012, 9(3):496-504. [15] 陈磊,胡文斌,孙其升, 等.网压上限值对地铁列车再生制动能量利用影响[J].电气化铁道,2014(5):47-50. Chen Lei, Hu Wenbin, Sun Qisheng, et al.Influence of upper limit voltage on regenerative braking energy utilization of metro trains[J]. Electrical Railway, 2014(5): 47-50. [16] 夏欢,杨中平,杨志鸿,等.基于列车运行状态的城轨超级电容储能装置控制策略[J].电工技术学报,2017,32(21):16-23. Xia Huan, Yang Zhongping, Yang Zhihong, et al.Control strategy of supercapacitor energy storage system for urban rail transit based on operating status of trains[J]. Transactions of China Electrotechnical Society, 2017,32(21):16-23. [17] Jasbir A.Introduction to optimum design[M]. California:Academic Press, 2004. [18] 王雅平,林舜江,杨智斌,等.微电网多目标随机动态优化调度算法[J].电工技术学报,2018,33(10):2196-2207. Wang Yaping, Lin Shunjiang, Yang Zhibin, et al.Multi-objective stochastic dynamic optimal dispatch algorithm of microgrid[J]. Transactions of China Electrotechnical Society, 2018,33(10):2196-2207. [19] KalyanmoyD.Multi-objective optimization using evolutionary algorithms[M]. New York: John Wiley & Sons, 2001. [20] 肖浩,裴玮,孔力.含大规模电动汽车接入的主动配电网多目标优化调度方法[J].电工技术学报,2017,32(增刊2):179-189. Xiao Hao, Pei Wei, Kong Li.Multi-objective optimization for capacity configuration of PV-based Electric vehicle charging stations[J]. Transactions of China Electrotechnical Society, 2017,32(S2):179-189.