Fault Diagnosis of Accessories for the Low Voltage Conventional Circuit Breaker Based on One-Dimensional Convolutional Neural Network
Sun Shuguang1, Li Qin1, Du Taihang1, Cui Jingrui1, Wang Jingqin2
1. School of Artificial Intelligence Hebei University of Technology Tianjin 300130 China; 2. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China
Abstract:Since AC power supply is adopted in the coil circuit of switching accessories for low voltage conventional circuit breaker, the randomness of the closing phase angle of the coil circuit may cause the difference of current signals under the same operating state. Using the traditional intelligent fault diagnosis method may lead to inaccurate fault feature extraction of current signal, and then result in lower fault identification rate. To solve this problem, an intelligent fault diagnosis algorithm based on adaptive one-dimensional deep convolutional neural network with wide first-layer kernel (AW-1DCNN) is proposed. Compared with the traditional intelligent fault diagnosis method including two stages of manual feature extraction and fault classification, the proposed method combines these two stages into one. Firstly, considering the characteristics of the current signal of the switching coil, a one-dimensional convolutional neural network model is adopted, and the convolution kernel for the first convolutional layer of the model is set as a wide convolution kernel to expand the receptive region. Secondly, the feature extraction layer is used to complete the adaptive feature extraction of the current signal. Finally, the fault diagnosis results are output by the Softmax classifier. The experimental results demonstrate that the proposed algorithm can not only effectively identify the same fault at different phase angles, but also maintain a high fault identification rate in the generalization experiment, which effectively overcomes the influence of closing phase angle on fault diagnosis results.
孙曙光, 李勤, 杜太行, 崔景瑞, 王景芹. 基于一维卷积神经网络的低压万能式断路器附件故障诊断[J]. 电工技术学报, 2020, 35(12): 2562-2573.
Sun Shuguang, Li Qin, Du Taihang, Cui Jingrui, Wang Jingqin. Fault Diagnosis of Accessories for the Low Voltage Conventional Circuit Breaker Based on One-Dimensional Convolutional Neural Network. Transactions of China Electrotechnical Society, 2020, 35(12): 2562-2573.
[1] 孙曙光, 张强, 杜太行, 等. 基于分合闸线圈电流的万能式断路器故障诊断[J]. 仪器仪表学报, 2018, 39(2): 130-140. Sun Shuguang, Zhang Qiang, Du Taihang, et al.Fault diagnosis for conventional circuit breaker based on switching coil current[J]. Chinese Journal of Scientific Instrument, 2018, 39(2): 130-140. [2] 程学珍, 朱晓林, 杜彦镔, 等. 基于神经模糊Petri网的高压断路器故障诊断研究[J]. 电工技术学报, 2018, 33(11): 2535-2544. Cheng Xuezhen, Zhu Xiaolin, Du Yanbin, et al.High voltage circuit breaker fault diagnosis based on neural fuzzy Petri nets[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2535-2544. [3] 孙曙光, 于晗, 杜太行, 等. 基于振动信号样本熵和相关向量机的万能式断路器分合闸故障诊断[J]. 电工技术学报, 2017, 32(7): 20-30. Sun Shuguang, Yu Han, Du Taihang, et al.Diagnisis on the switching fault of conventional circuit breaker based on vibration signal sample entropy and relevance vector machine[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 20-30. [4] Razi-Kazemi A A, Vakilian M, Niayesh K, et al. Circuit-breaker automated failure tracking based on coil current signature[J]. IEEE Transactions on Power Delivery, 2014, 29(1): 283-290. [5] 孙银山, 张文涛, 张一茗, 等. 高压断路器分合闸线圈电流信号特征提取与故障判别方法研究[J]. 高压电器, 2015, 51(9): 134-139. Sun Yinshan, Zhang Wentao, Zhang Yiming, et al.Research on feature value extraction and fault recognition of coil current signal in high-voltage circuit breaker[J]. High Voltage Apparatus, 2015, 51(9): 134-139. [6] 杨凌霄, 朱亚丽. 基于概率神经网络的高压断路器故障诊断[J]. 电力系统保护与控制, 2015, 43(10): 62-67. Yang Lingxiao, Zhu Yali.High voltage circuit breaker fault diagnosis of probabilistic neural network[J]. Power System Protection and Control, 2015, 43(10): 62-67. [7] 余路, 曲建岭, 高峰, 等. 基于改进稀疏编码的微弱振动信号特征提取算法[J]. 仪器仪表学报, 2017, 38(3): 711-717. Yu Lu, Qu Jianling, Gao Feng, et al.Feature extraction of weak vibration signal based on improved sparse coding[J]. Chinese Journal of Scientific Instrument, 2017, 38(3): 711-717. [8] 杨凯, 张认成, 杨建红, 等. 基于分形维数和支持向量机的串联电弧故障诊断方法[J]. 电工技术学报, 2016, 31(2): 70-77. Yang Kai, Zhang Rencheng, Yang Jianhong, et al.Series arc fault diagnostic method based on fractal dimension and support vector machine[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 70-77. [9] 赵书涛, 张佩, 申路, 等. 高压断路器振声联合故障诊断方法[J]. 电工技术学报, 2014, 29(7): 216-221. Zhao Shutao, Zhang Pei, Shen Lu, et al.Vibration and acoustic joint mechanical fault diagnosis method of high voltage circuit breakers[J]. Transactions of China Electrotechnical Society, 2014, 29(7): 216-221. [10] Wen Jin, Wen Hutang, Tong Qin, et al.Fault diagnosis of high-voltage circuit breakers using wavelet packet technique and support vector machine[J]. CIRE-Open Access Proceedings Journal, 2017, 2017(1): 170-174. [11] 史丽萍, 汤家升, 王攀攀, 等. 采用最优小波树和改进BP神经网络的感应电动机定子故障诊断[J]. 电工技术学报, 2015, 30(24): 38-45. Shi Liping, Tang Jiasheng, Wang Panpan, et al.Stator fault diagnosis of induction motors using the optimal wavelet tree and improved BP neural net[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 38-45. [12] Ali J B, Fnaiech N, Saidi L, et al.Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals[J]. Applied Acoustics, 2015, 89(3): 16-27. [13] 曲建岭, 余路, 袁涛, 等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报, 2018, 39(7): 134-143. Qu Jianling, Yu Lu, Yuan Tao, et al.Adaptive fault diagnosis algorithm for rolling bearings based on one-dimensional convolutional neural network[J]. Chinese Journal of Scientific Instrument, 2018, 39(7): 134-143. [14] Lecun Y, Bengio Y, Hinton G.Deep learning[J]. Nature, 2015, 521(7553): 436-444. [15] 任浩, 屈剑锋, 柴毅, 等. 深度学习在故障诊断领域中的研究现状与挑战[J]. 控制与决策, 2017, 32(8): 1345-1358. Ren Hao, Qu Jianfeng, Chai Yi, et al.Deep learning for fault diagnosis: the state of the art and challenge[J]. Control and Decision, 2017, 32(8): 1345-1358. [16] Jia Feng, Lei Yaguo, Lin Jing, et al.Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J]. Mechanical Systems and Signal Processing, 2016, 9(1): 161-171. [17] 刘辉海, 赵星宇, 赵洪山, 等. 基于深度自编码网络模型的风电机组齿轮箱故障检测[J]. 电工技术学报, 2017, 32(17): 156-163. Liu Huihai, Zhao Xingyu, Zhao Hongshan, et al.Fault detection of wind turbine gearbox based on deep autoencoder network[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 156-163. [18] Li Zhouhang, Wu Yuxin, Tang Guoli, et al.Comparison between heat transfer to supercritical water in a smooth tube and in an internally ribbed tube[J]. International Journal of Heat & Mass Transfer, 2015, 84: 529-541. [19] Long Wen, Xing Yuli, Liang Gao, et al.A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5990-5998. [20] 李恒, 张氢, 秦仙蓉, 等. 基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J]. 振动与冲击, 2018, 37(19): 124-131. Li Heng, Zhang Qing, Qin Xianrong, et al.Fault diagnosis method for rolling bearing based on short-time fourier transform and convolution neural network[J]. Journal of Vibration and Shock, 2018, 37(19): 124-131. [21] Jian Xianzhong, Li Wenlong, Guo Xuguang, et al.Fault diagnosis of motor bearings based on a onedimensional fusion neural network[J]. Sensors, 2019, 19(1): 122. [22] Hubel D H, Wisesl T N.Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex[J]. Journal of Physiology, 1962, 160(1): 106-154. [23] Nair V, Hinton G.Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning (ICML), Haifa, 2010: 807-814. [24] Ioffe S, Szegedy C.Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015: 448-456. [25] Kingma D P, Ba J.Adam: a method for stochastic optimization[J]. International Conference on Learning Representations, California, San Diego, USA, 2014. [26] Zhang Wei, Peng Gaoliang, Li Chuanhao, et al.A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017, 17(2): 425. [27] Szegedy C, Vanhoucke V, Ioffe S, et al.Rethinking the inception architecture for computer vision[C]// Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016: 2818-2826.