Abstract:Traditional current differential protection for high voltage direct current (HVDC) transmission lines has the disadvantages such as low tripping speed and limited ability to withstand high-impedance faults. Therefore, a novel pilot protection scheme based on the ratio of transient energy within the specific frequency band on both sides of the line boundary is proposed. Based on the impedance-frequency characteristic of the DC filter, the theoretical analysis on the fault-component networks corresponding to internal and external faults on the DC transmission line shows that, under an internal fault, for either terminal of the dc line, the transient energy within a specific frequency band on the line side of the boundary is much greater than that on the valve side of the boundary, and their ratio is large. Nevertheless, for rectifier-terminal (inverter-terminal) external faults, the transient energy on the line side of the rectifier-terminal (inverter-terminal) boundary is much less than that on the valve side of the boundary, and their ratio is small. Thus, it can be utilized to discriminate internal faults from external ones. Simulation results show that the proposed protection scheme with low computational complexity can identify the internal and external faults quickly, and can protect the entire line reliably. Besides, it can identify high-impedance internal faults and is not subject to the distributed capacitor of dc lines.
戴志辉, 刘宁宁, 何永兴, 鲁浩, 刘媛. 基于直流滤波环节暂态能量比的高压直流线路纵联保护[J]. 电工技术学报, 2020, 35(9): 1985-1998.
Dai Zhihui, Liu Ningning, He Yongxing, Lu Hao, Liu Yuan. A Pilot Protection for HVDC Transmission Lines Based on the Ratio of DC Filter Link Transient Energy. Transactions of China Electrotechnical Society, 2020, 35(9): 1985-1998.
[1] 程佩芬, 李崇涛, 傅闯, 等. 基于状态空间法的高压直流输电系统电磁暂态简化模型的解析算法[J]. 电工技术学报, 2019, 34(6): 1230-1239. Cheng Peifen, Li Chongtao, Fu Chuang, et al.An analytic solution for simplified electromagnetic transient model of HVDC transmission system based on state space method[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1230-1239. [2] 陈仕龙, 张杰, 刘红锐, 等. 特高压直流输电线路单端电流方向暂态保护[J]. 电工技术学报, 2016, 31(2): 171-177. Chen Shilong, Zhang Jie, Liu Hongrui, et al.A single-ended current direction transient protection of UHVDC transmission line[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 171-177. [3] 张刘春. ±1100kV特高压直流输电线路防雷保护[J].电工技术学报, 2018, 33(19): 4611-4617. Zhang Liuchun.Lightning protection of ±1100kV UHVDC transmission line[J]. Transactions of China Electrotechnical Society, 2018, 33(19): 4611-4617. [4] 王玲, 文俊, 司瑞华, 等. UHVDC分极分层接入方式及其运行特性[J]. 电工技术学报, 2018, 33(4): 730-738. Wang Ling, Wen Jun, Si Ruihua, et al.The connection mode and operation characteristics of UHVDC with hierarchical connection by pole[J]. Transactions of China Electrotechnical Society, 2018, 33(4): 730-738. [5] 李建国, 刘文华, 王久和, 等. 基于LCC和双钳位MMC混联高压直流输电的实验[J]. 电工技术学报, 2018, 33(16): 3677-3685. Li Jianguo, Liu Wenhua, Wang Jiuhe, et al.Experi- ment of hybrid high voltage direct current trans- mission based on LCC and clamp double sub module MMC[J]. Transactions of China Electrotechnical Society, 2018, 33(16): 3677-3685. [6] 武文, 吴学智, 荆龙, 等. 适用于多端直流输电系统的模块化多端口直流潮流控制器[J]. 电工技术学报, 2019, 34(3): 539-551. Wu Wen, Wu Xuezhi, Jing Long, et al.A modular multi-port DC power flow controller for multi- terminal DC transmission system[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 539-551. [7] 李小鹏, 汤涌, 朱清代, 等. 利用测量波阻抗相位特征的高压直流输电线路纵联保护[J]. 电网技术, 2018, 42(4): 1251-1258. Li Xiaopeng, Tang Yong, Zhu Qingdai, et al.Pilot protection for HVDC transmission lines utilizing phase features of measured surge impedance[J]. Power System Technology, 2018, 42(4): 1251-1258. [8] 赵航, 林湘宁, 喻锟, 等. 基于模量Hausdorff距离波形比较的直流输电线路选择性快速保护方案[J]. 中国电机工程学报, 2017, 37(23): 6888-6900. Zhao Hang, Lin Xiangning, Yu Kun, et al.A high- speed protection scheme for HVDC transmission line based on Hausdorff distance comparison[J]. Pro- ceedings of the CSEE, 2017, 37(23): 6888-6900. [9] 戴志辉, 严思齐, 张程, 等. 基于电流特征量相关系数的UHVDC线路纵联保护新原理[J]. 电力系统保护与控制, 2018, 46(22): 31-38. Dai Zhihui, Yan Siqi, Zhang Cheng, et al.A new pilot protection for UHVDC lines based on cor- relation coefficient of designed current variables[J]. Power System Protection and Control, 2018, 46(22): 31-38. [10] 李小鹏, 汤涌, 滕予非, 等. 基于反行波幅值比较的高压直流输电线路纵联保护方法[J]. 电网技术, 2016, 40(10): 3095-3101. Li Xiaopeng, Tang Yong, Teng Yufei, et al.Pilot protection method based on amplitude comparison of backward traveling wave for HVDC transmission lines[J]. Power System Technology, 2016, 40(10): 3095-3101. [11] 孔飞, 张保会, 王艳婷, 等. 基于行波波形相关性分析的直流输电线路纵联保护方案[J]. 电力系统自动化, 2014, 38(20): 108-114. Kong Fei, Zhang Baohui, Wang Yanting, et al.A novel pilot protection scheme for HVDC transmission lines based on waveform correlation analysis of traveling wave[J]. Automation of Electric Power Systems, 2014, 38(20): 108-114. [12] 李钊, 邹贵彬, 许春华, 等. 基于S变换的HVDC输电线路纵联保护方法[J]. 中国电机工程学报, 2016, 36(5): 1228-1235. Li Zhao, Zou Guibin, Xu Chunhua, et al.S-transform based pilot protection method for HVDC trans- mission lines[J]. Proceedings of the CSEE, 2016, 36(5): 1228-1235. [13] 魏德华, 苗世洪, 刘子文, 等. 基于边界特征的高压直流输电长线路故障判别方法[J]. 电力系统保护与控制, 2018, 46(17): 75-82. Wei Dehua, Miao Shihong, Liu Ziwen, et al.A fault identification method for HVDC transmission with long line based on boundary characteristics[J]. Power System Protection and Control, 2018, 46(17): 75-82. [14] Song Guobing, Chu Xu, Gao Shuping, et al.A new whole-line quick-action protection principle for HVDC transmission lines using one-end current[J]. IEEE Transactions on Power Delivery, 2015, 30(2): 599-607. [15] 李斌, 何佳伟, 李晔, 等. 基于边界特性的多端柔性直流配电系统单端量保护方案[J]. 中国电机工程学报, 2016, 36(21): 5741-5749. Li Bin, He Jiawei, Li Ye, et al.Single-ended protection scheme based on boundary characteristic for the multi-terminal VSC-based DC distribution system[J]. Proceedings of the CSEE, 2016, 36(21): 5741-5749. [16] 孔飞, 张保会, 甄威, 等. 高压直流输电线路边界高频电压信号衰减特性分析[J]. 电力系统保护与控制, 2013, 41(16): 85-90. Kong Fei, Zhang Baohui, Zhen Wei, et al.Analysis on high frequency voltage signal attenuation charac- teristic of HVDC transmission line boundary[J]. Power System Protection and Control, 2013, 41(16): 85-90. [17] 林圣, 牟大林, 刘磊, 等. 基于特征谐波阻抗比值的HVDC直流滤波器高压电容器接地故障保护方案[J]. 中国电机工程学报, 2019, 39(22): 6617-6627. Lin Sheng, Mu Dalin, Liu Lei, et al.Research on ground fault protection of HVDC DC filter high voltage capacitor based on characteristic harmonic impedance ratio[J]. Proceedings of the CSEE, 2019, 39(22): 6617-6627. [18] 杨亚宇, 邰能灵, 范春菊, 等. 利用峰值频率的高压直流输电线路纵联保护方案[J]. 中国电机工程学报, 2017, 37(15): 4304-4314, 4570. Yang Yayu, Tai Nengling, Fan Chunju, et al.A pilot protection scheme for HVDC transmission lines based on specific-frequency[J]. Proceedings of the CSEE, 2017, 37(15): 4304-4314, 4570. [19] 王俊生, 柳焕章. 高压直流输电线路保护的前加速[J]. 电力系统自动化, 2019, 43(9): 1-11, 30. Wang Junsheng, Liu Huanzhang.Pre-acceleration of protection for HVDC transmission lines[J]. Auto- mation of Electric Power Systems, 2019, 43(9): 1-11, 30. [20] 陈钊, 乐波, 杨祺铭, 等. ±1500kV特高压直流输电系统主回路设计[J]. 电力建设, 2019, 40(4): 128-134. Chen Zhao, Le Bo, Yang Qiming, et al.Study on main circuit design of ±1500kV UHVDC trans- mission system[J]. Electric Power Construction, 2019, 40(4): 128-134. [21] 郑超, 莫品豪, 文继锋, 等. 直流滤波器高压电容器接地故障保护判据和方案[J]. 电力系统自动化, 2018, 42(1): 132-137. Zheng Chao, Mo Pinhao, Wen Jifeng, et al.Criterion and scheme for high-voltage capacitor earth fault protection of DC filter[J]. Automation of Electric Power Systems, 2018, 42(1): 132-137. [22] 徐亮亮. 高压直流输电系统直流滤波器综合设计[J]. 电力勘测设计, 2018(增刊2): 100-104. Xu Liangliang.Integrated design of DC filter for HVDC transmission system[J]. Electric Power Survey & Design, 2018(S2): 100-104. [23] Gao Shuping, Song Guobing, Ma Zhibin, et al.Novel pilot protection principle for high voltage direct current transmission lines based on fault component current characteristics[J]. IET Generation, Transmission & Distribution, 2015, 9(5): 468-474. [24] Xiao Hao, Li Yinhong, Liu Ruoping, et al.Single-end time-domain transient electrical signals based pro- tection principle and its efficient setting calculation method for LCC-HVDC lines[J]. IET Generation, Transmission & Distribution, 2017, 11(5): 1233-1242.