Highly Sensitive Enhanced Pilot Protection of Half-Wavelength Transmission Line Based on Directional Traveling Wave Energy
Shu Hongchun, Liu Litao, Tang Yutao, Han Yiming, Bo Zhiqian
State Key Laboratory of Collaborative Innovation Center for Smart Grid Fault Detection Protection and Control Jointly Kunming University of Science and Technology Kunming 650500 China
Abstract:The Half-wavelength transmission system can be used as an option to carry high-capacity new energy outbound trunk channels. However, the traveling wave protection faces challenges due to the weak fault traveling waves at the midpoint and far end of the line. The fault-traveling wave transmission characteristics under three types of buses at the half-wavelength transmission line protection installation are analyzed. After that, a new traveling wave direction element is constructed by the ratio of the incident wave and the reflected wave energy at the end of the adjacent line. As a result, the characteristic fault difference and fault recognition inside and outside the zone can be improved. This directional element establishes a longitudinal protection scheme for half-wavelength transmission lines with traveling transient wave energy. Lightning impulse corona simulation and RTDS digital-analog hybrid tests show that the protection has a sensitive start-up, strong selectivity, and no need for double terminal data synchronization. Moreover, its performance is better than traditional traveling wave protection.
束洪春, 刘力滔, 唐玉涛, 韩一鸣, 薄志谦. 基于行波暂态能量的半波长输电线路高灵敏增强型纵联保护方案[J]. 电工技术学报, 2022, 37(24): 6372-6387.
Shu Hongchun, Liu Litao, Tang Yutao, Han Yiming, Bo Zhiqian. Highly Sensitive Enhanced Pilot Protection of Half-Wavelength Transmission Line Based on Directional Traveling Wave Energy. Transactions of China Electrotechnical Society, 2022, 37(24): 6372-6387.
[1] 舒印彪, 张启平. 超长距离交流输电技术分析[M]. 北京: 中国电力出版社, 2020. [2] 杨冬, 刘玉田. 中国未来输电网架结构初探[J]. 电力自动化设备, 2010, 30(8): 1-5. Yang Dong, Liu Yutian.Preliminary discussion on China transmission backbone in the future[J]. Electric Power Automation Equipment, 2010, 30(8): 1-5. [3] 周远翔, 陈健宁, 张灵, 等. “双碳”与“新基建”背景下特高压输电技术的发展机遇[J]. 高电压技术, 2021, 47(7): 2396-2408. Zhou Yuanxiang, Chen Jianning, Zhang Ling, et al.Opportunity for developing ultra high voltage trans- mission technology under the emission peak, carbon neutrality and new infrastructure[J]. High Voltage Engineering, 2021, 47(7): 2396-2408. [4] 李肖, 杜丁香, 刘宇, 等. 半波长输电线路差动电流分布特征及差动保护原理适应性研究[J]. 中国电机工程学报, 2016, 36(24): 6802-6808, 6935. Li Xiao, Du Dingxiang, Liu Yu, et al.Analysis for differential current distribution and adaptability of differential protection of half-wavelength AC trans- mission line[J]. Proceedings of the CSEE, 2016, 36(24): 6802-6808, 6935. [5] 杜丁香, 王兴国, 柳焕章, 等. 半波长线路故障特征及保护适应性研究[J]. 中国电机工程学报, 2016, 36(24): 6788-6795, 6933. Du Dingxiang, Wang Xingguo, Liu Huanzhang, et al.Fault characteristics of half-wavelength AC trans- mission line and its impaction to transmission line protection[J]. Proceedings of the CSEE, 2016, 36(24): 6788-6795, 6933. [6] 李斌, 郭子煊, 姚斌, 等. 适用于半波长线路的贝瑞隆差动改进算法[J]. 电力系统自动化, 2017, 41(6): 80-85. Li Bin, Guo Zixuan, Yao Bin, et al.Bergeron model based current differential protection modified algorithm for half-wavelength transmission line[J]. Automation of Electric Power Systems, 2017, 41(6): 80-85. [7] 赵青春, 谢华, 陆金凤, 等. 实用的半波长输电线路纵联差动保护[J]. 高电压技术, 2018, 44(1): 44-50. Zhao Qingchun, Xie Hua, Lu Jinfeng, et al.Practical differential protection for half-wavelength transmission line[J]. High Voltage Engineering, 2018, 44(1): 44-50. [8] 董新洲, 雷傲宇, 汤兰西, 等. 行波特性分析及行波差动保护技术挑战与展望[J]. 电力系统自动化, 2018, 42(19): 184-191. Dong Xinzhou, Lei Aoyu, Tang Lanxi, et al.Analysis of traveling wave characteristics and challenges and prospects of traveling wave differential protection technology[J]. Automation of Electric Power Systems, 2018, 42(19): 184-191. [9] 郑玉平, 司鑫尧, 吴通华, 等. 特高压半波长交流输电线路的行波保护[J]. 电力系统自动化, 2020, 44(18): 124-131. Zheng Yuping, Si Xinyao, Wu Tonghua, et al.Travelling wave protection of UHV half-wavelength AC transmission lines[J]. Automation of Electric Power Systems, 2020, 44(18): 124-131. [10] 李斌, 郭子煊, 姚斌, 等. 适用于半波长输电线路的快速方向纵联保护方法[J]. 电力系统自动化, 2018, 42(10): 114-121. Li Bin, Guo Zixuan, Yao Bin, et al.Fast directional pilot protection method for half-wavelength trans- mission lines[J]. Automation of Electric Power Systems, 2018, 42(10): 114-121. [11] 郭雅蓉, 周泽昕, 柳焕章, 等. 时差法计算半波长线路差动保护最优差动点[J]. 中国电机工程学报, 2016, 36(24): 6796-6801, 6934. Guo Yarong, Zhou Zexin, Liu Huanzhang, et al.Time difference method to calculate the optimal differential point of half-wavelength AC transmission line differ- ential protection[J]. Proceedings of the CSEE, 2016, 36(24): 6796-6801, 6934. [12] 周泽昕, 柳焕章, 郭雅蓉, 等. 适用于半波长线路的假同步差动保护[J]. 中国电机工程学报, 2016, 36(24): 6780-6787, 6932. Zhou Zexin, Liu Huanzhang, Guo Yarong, et al.The false synchronization differential protection for half- wavelength transmission line[J]. Proceedings of the CSEE, 2016, 36(24): 6780-6787, 6932. [13] 陈乐, 彭咏泉, 林湘宁, 等. 面向接地故障辨识的半波长线路测距式超高速就地主保护新原理研究[J]. 电工技术学报, 2019, 34(24): 5234-5243. Chen Le, Peng Yongquan, Lin Xiangning, et al.New ultra high speed local measurement-based protection principle for half-wave transmission line ground fault identification[J]. Transactions of China Electrotech- nical Society, 2019, 34(24): 5234-5243. [14] Wolf A A, Shcherbachev O V.On normal working conditions of compensated lines with half-wave characteristics[J]. Elektrichestvo, 1940(1): 147-158. [15] 张广斌, 束洪春, 于继来, 等. 不依赖双侧时钟同步的输电线双端行波测距[J]. 电工技术学报, 2015, 30(20): 199-209. Zhang Guangbin, Shu Hongchun, Yu Jilai, et al.Double-ended travelling wave fault location independent of two side time synchronization[J]. Transactions of China Electrotechnical Society, 2015, 30(20): 199-209. [16] 王聪博, 贾科, 赵其娟, 等. 基于故障全电流相关性检验的柔性直流配电线路纵联保护[J]. 电工技术学报, 2020, 35(8): 1764-1775. Wang Congbo, Jia Ke, Zhao Qijuan, et al.Pilot protection for flexible-DC distribution line based on correlation test of DC current[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1764-1775. [17] 邹贵彬, 高厚磊, 江世芳, 等. 新型暂态行波幅值比较式超高速方向保护[J]. 中国电机工程学报, 2009, 29(7): 84-90. Zou Guibin, Gao Houlei, Jiang Shifang, et al.Novel transient travelling wave based amplitude comparison ultra high speed directional protection[J]. Proceedings of the CSEE, 2009, 29(7): 84-90. [19] 王建元, 朱永涛, 秦思远. 基于方向行波能量的小电流接地系统故障选线方法[J]. 电工技术学报, 2021, 36(19): 4085-4096. Wang Jianyuan, Zhu Yongtao, Qin Siyuan.Fault line selection method for small current grounding system based on directional traveling wave energy[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4085-4096. [20] 邓丰, 梅龙军, 唐欣, 等. 基于时频域行波全景波形的配电网故障选线方法[J]. 电工技术学报, 2021, 36(13): 2861-2870. Deng Feng, Mei Longjun, Tang Xin, et al.Faulty line selection method of distribution network based on time-frequency traveling wave panoramic waveform[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2861-2870. [21] 束洪春, 司大军, 于继来. 雷击输电线路电磁暂态仿真[J]. 电力系统自动化, 2005, 29(17): 68-71, 92. Shu Hongchun, Si Dajun, Yu Jilai.New electro- magnetic transient simulation approach considering impulsive corona and frequency-dependence line parameters[J]. Automation of Electric Power Systems, 2005, 29(17): 68-71, 92. [22] 哈恒旭, 张保会, 吕志来. 边界保护的理论基础第二部分: 线路边界的折、反射系数的频谱[J]. 继电器, 2002, 30(10): 1-5. Ha Hengxu, Zhang Baohui, Lü Zhilai.The spectrum analysis of fault transients for transmission lines part II: spectrum of reflection and refraction coefficient[J]. Relay, 2002, 30(10): 1-5. [23] 束洪春, 代月, 安娜, 等. 基于线性回归的柔性直流电网纵联保护方法[J]. 电工技术学报, 2022, 37(13): 3213-3226, 3288. Shu Hongchun, Dai Yue, An Na, et al.Pilot protection method of flexible DC grid based on linear regression[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3213-3226, 3288.