Abstract:The interactive and integrated development of electric vehicles (EVs), charging piles(CPs), and power grid can improve grid flexibility and stability, promote energy-clean and low-carbon transformation, and foster new drivers for developing the EVs industry. Scholars at home and abroad have conducted extensive and in-depth research on EVs-CPs-power grid interactive and integration technology. This paper systematically reviews the current situation and progress of EVs-CPs power grid interactive and integration technology. First, this paper investigates the research background and then summarizes the status of EVs-CPs-power grid interactive and integration technology from disorder-charging and order-charging to V2X. Second, the integration architecture of the EVs-CPs-power grid is summarized from the physical layer, platform layer, and fusion layer. This paper also analyzes the sensing and communication technologies when EVs and CPs are connected. The key issues of the EVs dispatching technology are discussed, and the flexible multi-party transactions of EVs-CPs-power grid interactive and integration technology are explored. After that, the typical application practice of EVs-CPs-power grid integration is introduced. Finally, the research on the EVs-CPs-power grid integration is prospected to provide a reference for the research and implementation of integrating EVs-CPs-power grid.
毛玲, 张钟浩, 赵晋斌, 屈克庆, 李芬. 车-桩-网交融技术研究现状及展望[J]. 电工技术学报, 2022, 37(24): 6357-6371.
Mao Ling, Zhang Zhonghao, Zhao Jinbin, Qu Keqing, Li Fen. Research Status and Prospects of Fusion Technology of Vehicle-Charging Pile-Power Grid. Transactions of China Electrotechnical Society, 2022, 37(24): 6357-6371.
[1] 中国政府网. 国务院办公厅关于印发新能源汽车产业发展规划(2021—2035年)的通知(国办发〔2020〕39号政府信息公开专栏)[2021-05-07]. 国务院办公厅关于印发新能源汽车产业发展规划(2021—2035年)的通知(国办发〔2020〕39号政府信息公开专栏)[2021-05-07]. http://www.gov.cn/zhengce/content/2020-11/02/content_5556716.html. [2] 中华人民共和国工业和信息化部. 国家电网公司发布碳达峰碳中和行动方案.https://www.miit.gov.cn/jgsj/jns/xydt/art/2021/art_8f1d9e8146274b75b7505aca0703a2d0.html. [3] 中国充电联网官网. http://www.evcipa.org.cn/China. charging network official website. http://www.evcipa.org.cn/ [4] 中国电动汽车充电基础设施促进联盟. http://www.evcipa.org.cn/China. Electric Vehicle Charging Infra- structure Promotion Alliance. http://www.evcipa.org.cn/ [5] 张葵葵. 国内外电动汽车充换电设施标准及应用现状[J]. 汽车维修与保养, 2020(12): 61-64. Zhang Kwai-Koi.Current status of domestic and international electric vehicle charging and switching facilities standards and applications[J]. Automotive Repair and Maintenance, 2020(12): 61-64. [6] 电动汽车传导充电用连接装置. GB/T 2023. GB/T 20234.2—2015[S]. http://www.china-nengyuan.com/tech/73576.html. [7] Wajahat Khan, Furkan Ahmad, Mohammad Saad Alam.Fast EV charging station integration with grid ensuring optimal and quality power exchange[J]. Engineering Science and Technology, An International Journal, 2019, 22(1): 143-152. [8] Feng Hao, Tavakoli R, Onar O C, et al.Advances in high-power wireless charging systems: overview and design considerations[J]. IEEE Transactions on Trans- portation Electrification, 2020, 6(3): 886-919. [9] 崔淑梅, 宋贝贝, 王志远. 电动汽车动态无线供电磁耦合机构研究综述[J]. 电工技术学报, 2022, 37(3): 537-554. Cui Shumei, Song Beibei, Wang Zhiyuan.Overview of magnetic coupler for electric vehicles dynamic wireless charging[J]. Transactions of China Electro- technical Society, 2022, 37(3): 537-554. [10] 钱斌, 石东源, 谢平平, 等. 电动公交车换电站—电池充电站优化规划[J]. 电力系统自动化, 2014, 38(2): 64-69, 84. Qian Bin, Shi Dongyuan, Xie Pingping, et al.Optimal planning of battery charging and exchange stations for electric vehicles[J]. Power System Automation, 2014, 38(2): 64-69, 84. [11] 中电联标准化管理中心官网. https://www.cec.org.cn/template1/index.html?181. [12] 舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报, 2017, 37(1): 1-8. Shu Yinbiao, Zhang Zhigang, Guo Jianbo, et al.Study on key factors and solution of renewable energy accommodation[J]. Proceedings of the CSEE, 2017, 37(1): 1-8. [13] 《国家电网有限公司服务新能源发展报告(2021)》. https://guangfu.bjx.com.cn/news/20210527/1154931.shtml. [14] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904, 2205. Zhou Xiaoxin, Chen Shuyong, Lu Zongxiang, et al.Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904, 2205. [15] 国家发展改革委. 国家能源局《关于推进电力源网荷储一体化和多能互补发展的指导意见》发改能源规[2021]28号.https://www.ndrc.gov.cn/xxgk/zcfb/ghxwj/202103/t20210305_1269046.html?code=&state=123. [16] 宋辉, 徐永海. 规模化电动汽车充电对配电网电压质量的影响及其对策[J]. 现代电力, 2017, 34(3): 30-35. Song Hui, Xu Yonghai.Impact of large-scale electric vehicle charging on voltage quality of distribution network and relevant countermeasures[J]. Modern Power, 2017, 34(3): 30-35. [17] Jiang C, Torquato R, Salles D, et al.Method to assess the power-quality impact of plug-in electric vehicles[J]. IEEE Transactions on Power Delivery, 2014, 29(2): 958-965. [18] Leou R C, Su C L, Lu C N.Stochastic analyses of electric vehicle charging impacts on distribution network[J]. IEEE Transactions on Power Systems, 2014,29(3): 1055-1063. [19] 朱世盘, 刘峰, 李从洋. 电动汽车对城市配电网的影响和谐波分析[J]. 华东电力, 2012, 40(5): 836-839. Zhu Shipan, Liu Feng, Li Congyang.EV impact on city power distribution network and its harmonic analysis[J]. East China Electric Power, 2012, 40(5): 836-839. [20] 赵可为. 规模化电动汽车接入配电网典型问题的研究[D]. 北京: 华北电力大学, 2018. [21] 孙建龙, 李妍, 胡国伟, 等. 电动汽车接入对配电变压器使用寿命的影响[J]. 高电压技术, 2015, 41(11): 3830-3835. Sun Jianlong, Li Yan, Hu Guowei, et al.Impact of plug-in electric vehicles on the operating life of distribution transformer[J]. High Voltage Engineering, 2015, 41(11): 3830-3835. [22] Razeghi G, Zhang L, Brown T, et al.Impacts of plug-in hybrid electric vehicles on a residential transformer using stochastic and empirical analysis[J]. Journal of Power Sources, 2014, 252(15): 277-285. [23] Gomez J C, Morcos M M.Impact of EV battery chargers on the power quality of distribution system[J]. IEEE Transactions on Power Delivery, 2003, 18(3): 975-981. [24] 高科. 广东省电动汽车负荷预测研究[D]. 北京: 北京交通大学, 2016. [25] 王立君. 电动汽车充电负荷对配电系统影响与优化策略分析[J]. 中国高新技术企业, 2017(4): 23-25. Wang Lijun.Influence of electric vehicle charging load on distribution system and optimization strategy analysis[J]. China High-tech Enterprise, 2017(4): 23-25. [26] 胡泽春, 宋永华, 徐智威, 等. 电动汽车接入电网的影响与利用[J]. 中国电机工程学报, 2012, 32(4): 1-10, 25. Hu Zechun, Song Yonghua, Xu Zhiwei, et al.Impacts and utilization of electric vehicles integration into power systems[J]. Proceedings of the CSEE, 2012, 32(4): 1-10, 25. [27] 梁瑞松. 电动汽车充电站与配电网的交互影响研究[D]. 北京: 华北电力大学, 2016. [28] 孔顺飞, 胡志坚, 谢仕炜, 等. 含电动汽车充电站的主动配电网二阶段鲁棒规划模型及其求解方法[J]. 电工技术学报, 2020, 35(5): 1093-1105. Kong Shunfei, Hu Zhijian, Xie Shiwei, et al.Two- stage robust planning model and its solution algorithm of active distribution network containing electric vehicle charging stations[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1093-1105. [29] 刘燕. 智能电网下充电站优化运营模型及决策支持系统研究[D]. 北京: 华北电力大学, 2021. [30] 徐智威, 胡泽春, 宋永华, 等. 充电站内电动汽车有序充电策略[J]. 电力系统自动化, 2012, 36(11): 38-43. Xu Zhiwei, Hu Zechun, Song Yonghua, et al.Corrdinated charging of plug-in electric vehicles in charging stations[J]. Power System Automation, 2012, 36(11): 38-43. [31] Dai Xianzhong, Chai Yufeng, Han Xinyang, et al.Temporal and spatial pricing for optimal electric vehicle charging and discharging management[C]// 2019 IEEE Innovative Smart Grid Technologies, Beijing, 2019: 2516-2521. [32] 田文奇, 和敬涵, 姜久春, 等. 电动汽车充电负荷空间分配优化算法[J]. 电工技术学报, 2013, 28(3): 269-276. Tian Wenqi, He Jinghan, Jiang Jiuchun, et al.Electric vehicle charging load spatial allocation optimization algorithm[J]. Transactions of China Electrotechnical Society, 2013, 28(3): 269-276. [33] 占恺峤, 宋永华, 胡泽春, 等. 以降损为目标的电动汽车有序充电优化[J]. 中国电机工程学报, 2012, 32(31): 11-18. Zhan Kaiqiao, Song Yonghua, Hu Zechun, et al.Coordination of electric vehicles charging to mini- mized active power losses[J]. Proceedings of the CSEE, 2012, 32(31): 11-18. [34] 孙晓明, 王玮, 苏粟, 等. 基于分时电价的电动汽车有序充电控制策略设计[J]. 电力系统自动化, 2013, 37(1): 191-195. Sun Xiaoming, Wang Wei, Su Su, et al.Coordinated charging strategy for electric vehicles based on time-of-use price[J]. Automation of Electric Power Systems, 2013, 37(1): 191-195. [35] 陈奎, 马子龙, 周思宇, 等. 电动汽车两阶段多目标有序充电策略研究[J]. 电力系统保护与控制, 2020, 48(1): 65-72. Chen Kui, Ma Zilong, Zhou Siyu, et al.Charging control strategy for electric vehicles based on two- stage multi-target optimization[J]. Power system Pro- tection and Control, 2020,48(1): 65-72. [36] 杨景旭, 周来, 张勇军, 等. “专变共享”模式下考虑时变电价和转移概率的EV有序充电[J]. 电力自动化设备, 2020, 40(10): 173-180, 193. Yang Jingxu, Zhou Lai, Zhang Yongjun, et al.Ordered charging of EVs considering time-varying electricity price and transition probability under “dedicated transformer sharing” mode[J]. Power Automation Equipment, 2020,40(10): 173-180, 193. [37] 史一炜, 冯冬涵, Ella Zhou, 等. 基于主从博弈的充电服务商充电引导方法及其定价策略[J]. 电工技术学报, 2019, 34(增刊2): 742-751. Shi Yiwei, Feng Donghan, Ella Zhou, et al.Stackelberg game based on supervised charging method and pricing strategy of charging service providers[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 742-751. [38] 王锡凡, 邵成成, 王秀丽, 等. 电动汽车充电负荷与调度控制策略综述[J]. 中国电机工程学报, 2013, 33(1): 1-10. Wang Xifan, Shao Chengcheng, Wang Xiuli, et al.Survey of electric vehicle charging load and dispatch control strategies[J]. Proceedings of the CSEE, 2013, 33(1): 1-10. [39] 杨涛. 电动汽车充电桩设计及充放电控制策略研究[D]. 合肥: 安徽工程大学, 2020. [40] 陈天锦, 牛高远, 甘江华, 等. 基于虚拟同步策略的电动汽车V2G充放电系统研究及样机实现[J]. 电力系统保护与控制, 2021, 49(3): 131-141. Chen Tianjin, Niu Gaoyuan, Gan Jianghua, et al.Research and prototype manufacture on electric vehicle V2G systems based on virtual synchronous control strategy[J]. Power System Protection and Control, 2021, 49(3): 131-141. [41] 邢紫佩, 王守相, 梅晓辉, 等. 考虑电动汽车充放电全程功率变化率和用户舒适度的V2H调度策略[J]. 电力自动化设备, 2020, 40(5): 70-76. Xing Zipei, Wang Shouxinag, Mei Xiaohui, et al.V2H scheduling strategy considering charging and discharging power change rate of electric vehicles and users' comfort level[J]. Electric Power Automation Equipment, 2020, 40(5): 70-76. [42] Seyfettin Vadi, Ramazan Bayindir, Alperen Mustafa Colak, et al.A review on communication standards and charging topologies of V2G and V2H operation strategies[J]. Energies, 2019, 12(19): 123-130. [43] 李德胜, 李国策, 刘博. 基于虚拟同步发电机控制技术的V2G系统研究[J]. 电力系统保护与控制, 2021, 49(7): 127-133. Li Desheng, Li Guoce, Liu Bo.Research on V2G system based on virtual synchronous generator control technology[J]. Power System Protection and Control, 2021, 49(7): 127-133. [44] Shams H, Sadeghfam A, Rostami N, et al.Exact approach for charging of PEVs with V2G capability to improve micro-grid reliability[J]. IET Generation, Transmission and Distribution, 2019, 13(16): 3690-3695. [45] Peng Chao, Zou Jianxiao, Lian Lian, et al.An optimal dispatching strategy for V2G aggregator participating in supplementary frequency regulation considering EV driving demand and aggregator's benefits[J]. Applied Energy, 2017, 190(10): 591-599. [46] Singh J, Tiwari R.Cost benefit analysis for V2G implementation of electric vehicles in distribution system. IEEE Transactions on Industry Applications, 2020, 56(5): 5963-5973. [47] Wei Wei, Mei Shengwei, Wu Lei, et al.Robust operation of distribution networks coupled with urban transportation infrastructures[J]. IEEE Transactions on Power Systems, 2017, 32(3): 2118-2130. [48] 胡代豪, 郭力, 刘一欣, 等. 计及光储快充一体站的配电网随机-鲁棒混合优化调度[J]. 电网技术, 2021, 45(2): 507-519. Hu Daihao, Guo Li, Liu Yixin, et al.Stochastic/ robust hybrid optimal dispatching of distribution networks considering fast charging stations with photovoltaic and energy storage[J]. Power Grid Technology, 2021, 45(2): 507-519. [49] 胡俊杰, 周华嫣然, 李阳. 集群电动汽车平抑光伏波动实时调度策略[J]. 电网技术, 2019, 43(7): 2552-2560. Hu Junjie, Zhou Huayanran, Li Yang.Real-time dispatching strategy for aggregated electric vehicles to smooth power fluctuation of photovoltaics[J]. Power Grid Technology, 2019, 43(7): 2552-2560. [50] 王明深, 穆云飞, 贾宏杰, 等. 考虑电动汽车集群储能能力和风电接入的平抑控制策略[J]. 电力自动化设备, 2018, 38(5): 211-219. Wang Mingshen, Mu Yunfei, Jia Hongjie, et al.Smoothing control strategy considering energy storage capability of electric vehicle aggregators and wind power integration[J]. Electric Power Auto- mation Equipment, 2018, 38(5): 211-219. [51] 崔金栋, 罗文达, 周念成. 基于多视角的电动汽车有序充放电定价模型与策略研究[J]. 中国电机工程学报, 2018, 38(15): 4438-4450, 4644. Cui Jindong, Luo Wenda, Zhou Niancheng.Research on pricing model and strategy of electric vehicle charging and discharging based on multi view[J]. Proceedings of the CSEE, 2018, 38(15): 4438-4450, 4644. [52] 张谦, 丁铸玮, 谭维玉, 等. 计及多代理的电动汽车放电电价两阶段谈判策略[J]. 电工技术学报, 2018, 33(增刊2): 616-627. Zhang Qian, Ding Zhuwei, Tan Weiyu, et al.A two-stage negotiation strategy of discharging price for electric vehicle considering multi-agent[J]. Transa- ctions of China Electrotechnical Society, 2018, 33(S2): 616-627. [53] 祝月艳, 石红, 方海峰. 我国电动汽车与电网协同发展现状分析与发展建议[J]. 汽车工业研究, 2021(4): 8-11. Zhu Yueyan, Shi Hong, Fang Haifeng.Analysis of the current situation and development suggestions of the coordinated development of electric vehicles and power grids in my country[J]. Automobile Industry Research, 2021(4): 8-11. [54] Hassija V, Chamola V, Garg S, et al.A blockchain- based framework for lightweight data sharing and energy trading in V2G network[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 5799-5812. [55] 崔岩, 胡泽春, 段小宇. 考虑充电需求空间灵活性的电动汽车运行优化研究综述[J]. 电网技术, 2022, 46(3): 981-994. Cui Yan, Hu Zechun, Duan Xiaoyu.Review on the electric vehicles operation optimization considering the spatial flexibility of electric vehicles charging demands[J]. Power Grid Technology, 2022, 46(3): 981-994. [56] Sains N S, Ai-Anbagi I.Optimal charging and discharging for EVs in a V2G participation under critical peak conditions[J]. IET Electrical Systems in Transportation, 2018, 8(2): 136-143. [57] 徐诗鸿, 张宏志, 石栋, 等. 面向智慧城市的快充负荷充电服务费制定策略[J]. 中国电机工程学报, 2020, 40(10): 3187-3201. Xu Shihong, Zhang Hongzhi, Shi Dong, et al.Setting strategy of charging service fee for fast charging load of smart cities[J]. Proceedings of the CSEE, 2020, 40(10): 3187-3201. [58] 姚一鸣, 赵溶生, 李春燕, 等. 面向电力系统灵活性的电动汽车控制策略[J]. 电工技术学报, 2022, 37(11): 2813-2824. Yao Yiming, Zhao Rongsheng, Li Chunyan, et al.Control strategy of electric vehicles oriented to power system flexibility[J]. Transactions of China Electro- technical Society, 2022, 37(11): 2813-2824. [59] Zheng Xueqin,Yao Yiping.Multi-objective capacity allocation optimization method of photovoltaic EV charging station considering V2G[J]. Journal of Central South University, 2021, 28(2): 120-128 [60] 阎坤, 李涛, 张孝杰. 基于MQTT的有序充电平台建设方案研究与应用[J]. 工业控制计算机, 2020, 33(8): 1-3. Yan Kun, Li Tao, Zhang Xiaojie.Research and application of orderly charging platform based on MQTT[J]. Industrial Control Computer, 2020, 33(8): 1-3. [61] 王赞, 陈光, 董晓, 等. 基于工业互联网的智慧能源服务系统架构研究[J]. 电力系统保护与控制, 2020, 48(3): 77-83. Wang Zan, Chen Guang, Dong Xiao, et al.Research on the architecture of smart energy service system based on industrial internet[J]. Power system Pro- tection and Control, 2020, 48(3): 77-83. [62] Grée F, Laznikova V, Kim B, et al.Cloud-based big data platform for vehicle-to-grid (V2G)[J]. World Electric Vehicle Journal, 2020, 11(2): 30. [63] 杨永标, 丁孝华, 朱金大, 等. 物联网应用于电动汽车充电设施的设想[J]. 电力系统自动化, 2010, 34(21): 95-98. Yang Yongbiao, Ding Xiaohua, Zhu Jinda, et al.Assumption of the internet of things in electric vehicle charging facilities[J]. Automation of Electric Power Systems, 2010, 34(21): 95-98. [64] 2022-2027年中国货运车联网技术行业发展监测及投资战略咨询报告. https://www.huaon.com/channel/internet/771097.html. [65] Eiza M H, Shi Q, Marnerides A K, et al.Efficient, secure, and privacy-preserving PMIPv6 protocol for V2G networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 19-33. [66] 毛玲, 邓思文, 赵登辉, 等. 新能源汽车监测平台在行驶和充电场景中的应用与思考[J]. 电工技术学报, 2022, 37(1): 1-10. Mao Ling, Deng Siwen, Zhao Denghui, et al.Application and thinking of big data technology of new energy vehicle monitoring platform in driving and charging scenarios[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 1-10. [67] Cao Yue, Song Houbin, Kaiwartya, et al. Mobile edge computing for big-data-enabled electric vehicle charging[J]. IEEE Communications Magazine, 2018, 56(3): 150-156. [68] Tang Qiang, Wang Kezhi, Song Yun, et al.Waiting time minimized charging and discharging strategy based on mobile edge computing supported by software-defined network[J]. IEEE Internet of Things Journal, 2020, 7(7): 6088-6101. [69] Cirimele V, Diana M, Bellotti F, et al.The fabric ICT platform for managing wireless dynamic charging road lanes[J]. IEEE Transactions on Vehicular Tech- nology, 2020, 69(3): 2501-2512. [70] 袁泉, 汤奕. 基于路-电耦合网络的电动汽车需求响应技术[J]. 中国电机工程学报, 2021, 41(5): 1627-1637. Yuan Quan, Tang Yi.Electric vehicle demand response technology based on traffic-grid coupling networks[J]. Proceedings of the CSEE, 2021, 41(5): 1627-1637. [71] 邢强, 陈中, 冷钊莹, 等. 基于实时交通信息的电动汽车路径规划和充电导航策略[J]. 中国电机工程学报, 2020, 40(2): 534-550. Xing Qiang, Chen Zhong, Leng Zhaoying, et al.Route planning and charging navigation strategy for electric vehicles based on real-time traffic information[J]. Proceedings of the CSEE, 2020, 40(2): 534-550. [72] Wan Zhiqiang, Li Hepeng, He Haibo, et al.Model- free real-time EV charging scheduling based on deep reinforcement learning[J]. IEEE Transactions on Smart Grid, 2019, 10(5): 5246-5257. [73] 刘敦楠, 刘明光, 王文, 等. 充电负荷聚合商参与绿色证书交易的运营模式与关键技术[J]. 电力系统自动化, 2020, 44(10): 1-9. Liu Dunnan, Liu Mingguang, Wang Wen, et al.Operation mode and key technologies of charging load aggregator participating in green certificate trading[J]. Automation of Electric Power Systems, 2020, 44(10): 1-9. [74] 程亦直, 张沛超. 配电网中电动汽车的实时滚动交易式充电管理[J]. 中国电机工程学报, 2019, 39(19): 5703-5713, 5898. Cheng Yizhi, Zhang Peichao.Real-time rolling transactive charging management of electric vehicles in distribution network[J]. Proceedings of the CSEE, 2019, 39(19): 5703-5713, 5898. [75] Gao Xiang, Chan Kawing, Xia Shiwei, et al.A multiagent competitive bidding strategy in a pool- based electricity market with price-maker participants of WPPs and EV aggregators[J]. IEEE Transactions on Industrial Informatics, 2021, 17(11): 7256-7268. [76] 北极星微电网官网. https://shupeidian.bjx.com.cn/html/20200521/1074220.shtml.