Auxiliary Frequency Regulation Control Strategy of Aggregated Electric Vehicles Based on Lyapunov-Based Economic Model Predictive Control
Yu Yang1,2, Zhang Ruifeng1,2, Lu Wentao1,2, Mi Zengqiang1,2, Cai Xinlei3
1. State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources North China Electric Power University Baoding 071003 China; 2. Key Laboratory of Distributed Energy Storage and Microgrid of Hebei Province North China Electric Power University Baoding 071003 China; 3. Electric Power Dispatching Control Center of Guangdong Grid Co. Ltd Guangzhou 510600 China
Abstract:Aiming at the problems of ignoring the differences among individuals for electric vehicles (EV) aggregation modeling and difficulty in balancing economy and stability simultaneously for frequency regulation assisted with EV, firstly, a transition probability calculation method considering the difference of battery capacity for the dynamic change process of EV was proposed based on Markov theory and the transition probability distribution function of the state of charge is derived. An aggregation model of EV was established and a combined frequency regulation model of typical two-area interconnection system participated by EV was built. Then, the dual-mode frequency regulation scenario based on the Lyapunov-based economic model predictive control was proposed. The adjustment cost through economic model prediction was reduced by Mode 1, and the system stability is guaranteed by Mode 2 using the auxiliary controller. Finally, the simulation results show that the aggregation model has high precision, and the control strategy can optimize the economy in regulation process while maintaining frequency stability.
余洋, 张瑞丰, 陆文韬, 米增强, 蔡新雷. 基于稳定经济模型预测控制的集群电动汽车辅助电网调频控制策略[J]. 电工技术学报, 2022, 37(23): 6025-6040.
Yu Yang, Zhang Ruifeng, Lu Wentao, Mi Zengqiang, Cai Xinlei. Auxiliary Frequency Regulation Control Strategy of Aggregated Electric Vehicles Based on Lyapunov-Based Economic Model Predictive Control. Transactions of China Electrotechnical Society, 2022, 37(23): 6025-6040.
[1] 姚一鸣, 赵溶生, 李春燕, 等. 面向电力系统灵活性的电动汽车控制策略[J]. 电工技术学报, 2022, 37(11): 2813-2824. Yao Yiming, Zhao Rongsheng, Li Chunyan, et al.Control strategy of electric vehicles oriented to power system flexibility[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2813-2824. [2] 张一媚, 董朝宇, 董晓红, 等. 含电动汽车集群调频的信息能源系统谱特征和稳定性评估[J]. 电力系统自动化, 2021, 45(2): 12-20. Zhang Yimei, Dong Chaoyu, Dong Xiaohong, et al.Spectral feature and stability assessment for cyber-energy system with frequency regulation of electric vehicle cluster[J]. Automation of Electric Power Systems, 2021, 45(2): 12-20. [3] 黄小庆, 陈颉, 谢啟波, 等. 用户充电选择对电网充电调度的影响[J]. 电工技术学报, 2018, 33(13): 3002-3011. Huang Xiaoqing, Chen Jie, Xie Qibo, et al.The influence of users' charging selection on charging schedule of power grid[J]. Transactions of China Electrotechnical Society, 2018, 33(13): 3002-3011. [4] 吴赋章, 杨军, 林洋佳, 等. 考虑用户有限理性的电动汽车时空行为特性[J]. 电工技术学报, 2020, 35(7): 1563-1574. Wu Fuzhang, Yang Jun, Lin Yangjia, et al.Research on spatiotemporal behavior of electric vehicles considering the users' bounded rationality[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1563-1574. [5] 吴洲洋, 艾欣, 胡俊杰. 需求侧灵活性资源参与调频辅助服务的备用优化与实时调度[J]. 电力系统自动化, 2021, 45(6): 148-157. Wu Zhouyang, Ai Xin, Hu Junjie.Reserve optimization and real-time scheduling of frequency regulation ancillary service with participation of flexible resource on demand side[J]. Automation of Electric Power Systems, 2021, 45(6): 148-157. [6] Bashash S, Fathy H K.Modeling and control of aggregate air conditioning loads for robust renewable power management[J]. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1318-1327. [7] 艾欣, 赵阅群, 周树鹏. 适应清洁能源消纳的配电网集群电动汽车充电负荷模型与仿真研究[J]. 中国电力, 2016, 49(6): 170-175. Ai Xin, Zhao Yuequn, Zhou Shupeng.Study on aggregate electric vehicle charging load model and simulation for clean energy accommodation in distribution network[J]. Electric Power, 2016, 49(6): 170-175. [8] Le Floch C, Kara E C, Moura S.PDE modeling and control of electric vehicle fleets for ancillary services: a discrete charging case[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 573-581. [9] 陆婷婷. 空调负荷的储能建模和控制策略研究[D]. 南京: 东南大学, 2015. [10] 张谦, 周林, 周雒维, 等. 计及电动汽车充放电静态频率特性的负荷频率控制[J]. 电力系统自动化, 2014, 38(16): 74-80. Zhang Qian, Zhou Lin, Zhou Luowei, et al.Load frequency control considering charging and discharging static frequency characteristics of electric vehicles[J]. Automation of Electric Power Systems, 2014, 38(16): 74-80. [11] 鲍谚, 贾利民, 姜久春, 等. 电动汽车移动储能辅助频率控制策略的研究[J]. 电工技术学报, 2015, 30(11): 115-126. Bao Yan, Jia Limin, Jiang Jiuchun, et al.Research on the control strategy of electric vehicle mobile energy storage in ancillary frequency regulation[J]. Transactions of China Electrotechnical Society, 2015, 30(11): 115-126. [12] 季振亚. 能源互联网包容下电动汽车储能及气电互联的市场化设计[D]. 南京: 东南大学, 2018. [13] 虞临波, 寇鹏, 冯玉涛, 等. 风储联合发电系统参与频率响应的模型预测控制策略[J]. 电力系统自动化, 2019, 43(12): 36-43. Yu Linbo, Kou Peng, Feng Yutao, et al.Model predictive control strategy for combined wind-storage system to participate in frequency response[J]. Automation of Electric Power Systems, 2019, 43(12): 36-43. [14] 樊国东, 刘世林, 裴俊, 等. 光火储混合发电系统的负荷频率协调优化控制[J]. 电力系统及其自动化学报, 2020, 32(12): 134-143. Fan Guodong, Liu Shilin, Pei Jun, et al.Load frequency coordinated optimization control of hybrid power generation system consisting of PV, thermal power and energy storage[J]. Proceedings of the CSU-EPSA, 2020, 32(12): 134-143. [15] 张舒鹏, 董树锋, 徐成司, 等. 大规模储能参与电网调频的双层控制策略[J]. 电力系统自动化, 2020, 44(19): 55-62. Zhang Shupeng, Dong Shufeng, Xu Chengsi, et al.Bi-level control strategy for power grid frequency regulation with participation of large-scale energy storage[J]. Automation of Electric Power Systems, 2020, 44(19): 55-62. [16] 廖小兵, 刘开培, 乐健, 等. 基于双层模型预测结构的跨区域AGC机组协同控制策略[J]. 中国电机工程学报, 2019, 39(16): 4674-4685, 4970. Liao Xiaobing, Liu Kaipei, Le Jian, et al.Coordinated control strategy for AGC units across areas based on Bi-level model predictive control[J]. Proceedings of the CSEE, 2019, 39(16): 4674-4685, 4970. [17] Heidarinejad M, Liu J, Christofides P D.Economic model predictive control of nonlinear process syetems using Lyapunov techniques[M]. London: Advances in Industrial Control, 2017. [18] 董锴, 蔡新雷, 崔艳林, 等. 基于马尔科夫链的电动汽车聚合建模及多模式调频控制策略[J]. 电网技术, 2022, 46(2): 622-631. Dong Kai, Cai Xinlei, Cui Yanlin, et al.Aggregation modeling based on Markov chain and multi-mode control strategies of aggregated electric vehicles for frequency regulation[J]. Power System Technology, 2022, 46(2): 622-631. [19] 黄际元, 李欣然, 曹一家, 等. 面向电网调频应用的电池储能电源仿真模型[J]. 电力系统自动化, 2015, 39(18): 20-24, 74. Huang Jiyuan, Li Xinran, Cao Yijia, et al.Battery energy storage power supply simulation model for power grid frequency regulation[J]. Automation of Electric Power Systems, 2015, 39(18): 20-24, 74. [20] 李清, 张孝顺, 余涛, 等. 电动汽车充换电站参与电网AGC功率分配的成本一致性算法[J]. 电力自动化设备, 2018, 38(3): 80-87, 95. Li Qing, Zhang Xiaoshun, Yu Tao, et al.Cost consensus algorithm of electric vehicle charging station participating in AGC power allocation of grid[J]. Electric Power Automation Equipment, 2018, 38(3): 80-87, 95. [21] Kothare M V, Balakrishnan V, Morai M.Robust constrained model predictive control using linear matrix inequalities[J]. Automatica, 1996, 32(10): 1361-1379. [22] Koch S, Mathieu J, Callaway D.Modeling and control of aggregated heterogeneous thermostatically controlled loads for ancillary services[C]//Power System Computation Conference, Stockholm, Sweden, 2011: 22-26. [23] Khan A T, Cao Xinwei, Li Shuai, et al.Quantum beetle antennae search: a novel technique for the constrained portfolio optimization problem[J]. Science China Information Sciences, 2021, 64(5): 1-14.