Abstract:The voltage reduction characteristics of single-phase current-source PWM converters as rectifiers and the voltage boost characteristics as inverters can meet the current application requirements of single-phase AC-DC converters. Traditional single-phase current-source PWM converters require a large inductor connected in series on the DC side to filter out the naturally occurring second harmonic ripple power, leading to high cost and large volume. The causes and suppression strategies of the second harmonic ripple power on the DC side of single-phase current-source PWM converters are analyzed in this paper. Then, a symmetrical half-bridge power decoupling topology is proposed, and a single-phase current-source PWM rectifier is introduced. The proposed decoupling topology can compensate for the second harmonic ripple power while reducing inductance values, costs, and volume. The proposed decoupling topology consists of two inverse-blocking IGBTs with series-connected diodes, one capacitor (Cpd), and two inductors (L1 and L2). The decoupling topology compensates for the second harmonic ripple power by charging and discharging inductors L1 and L2 with capacitor Cpd. When one inductor is being charged, the other inductor must be discharged. From the power absorption and release perspective, when the decoupling topology operates in region ①, inductor L1 is charging while inductor L2 is discharging. Because L1 absorbs more energy than L2 releases, the decoupling topology absorbs ripple power from the DC side. In region ②, L1 is discharging while L2 is charging. Because L1 releases more energy than L2 absorbs, the decoupling topology releases ripple power from the DC side. This working mode reduces current ripple and inductance values. Regions ③ and ④ follow a similar logic. The parameter designs for the capacitor and inductors are provided. The capacitor Cpd is 47 μF, and inductors L1 and L2 are 10 mH. After that, the two inductors are coupled magnetically, reducing the number of circuit components. The effect of inductance value reduction is enhanced. Finally, a control method with indirect closed-loop control of output current on the DC side is presented, which directly samples the DC side current and improves the reliability of the system. Suppose all other parameters are equal, simulations and experiments of a traditional single-phase current-source PWM rectifier with a 75 mH inductor and a single-phase current-source rectifier based on a symmetrical half-bridge decoupling topology with two 10mH inductors are conducted. The proposed symmetrical half-bridge power decoupling topology effectively suppresses the second harmonic ripple of the DC-side current in single-phase current-source converters. The proposed topology significantly reduces the DC-side inductance value, increases efficiency, and reduces the system’s costs, weight, and volume. After magnetic integration, only one inductor component remains, and the value of each inductor is further reduced. The control method based on the indirect closed-loop power decoupling topology has a simple structure and is easy to implement. Compared to traditional decoupling circuit control methods, this method eliminates the need for additional sensors, complex regulators, and calculations, providing greater flexibility in practical applications.
王立乔, 臧朔, 李翀, 王皓玉. 一种基于对称半桥功率解耦拓扑的单相电流型变换器[J]. 电工技术学报, 2024, 39(24): 7764-7776.
Wang Liqiao, Zang Shuo, Li Chong, Wang Haoyu. A Single-Phase Current-Source Converter Based on the Symmetrical Half-Bridge Power Decoupling Topology. Transactions of China Electrotechnical Society, 2024, 39(24): 7764-7776.
[1] 贾焦心, 彭维锋, 颜湘武, 等. 基于余弦定理的旋转潮流控制器功率解耦控制方法[J]. 电工技术学报, 2023, 38(13): 3425-3435. Jia Jiaoxin, Peng Weifeng, Yan Xiangwu, et al.Research on power decoupling control method rotary power flow controller based on cosine law[J]. Transactions of China Electrotechnical Society, 2023, 38(13): 3425-3435. [2] 姜卫东, 张庆岩, 刘圣宇, 等. 适用于双负载模式的Vienna整流器调制方法[J]. 电力系统自动化, 2023, 47(17): 160-168. Jiang Weidong, Zhang Qingyan, Liu Shengyu, et al.Modulation method for Vienna rectifier in dual load mode[J]. Automation of Electric Power Systems, 2023, 47(17): 160-168. [3] 朱艺锋, 赵海龙, 张国澎, 等. 单相五电平整流器滑模模型预测控制[J]. 电工技术学报, 2022, 37(8): 2030-2039. Zhu Yifeng, Zhao Hailong, Zhang Guopeng, et al.Sliding mode model predictive control of single-phase five-level rectifier[J]. Transactions of China Electro-technical Society, 2022, 37(8): 2030-2039. [4] 郭强, 周琛力, 李山. 面向电流源型PWM整流器直流侧电压的多环路控制策略[J]. 电工技术学报, 2022, 37(8): 2051-2063. Guo Qiang, Zhou Chenli, Li Shan.A multiple loops control strategy based on DC link voltage of current source PWM rectifiers[J]. Transactions of China Electrotechnical Society, 2022, 37(8): 2051-2063. [5] 李山, 马雯, 郭强, 等. 非理想电网条件下PWM整流器优化预测功率控制[J]. 电工技术学报, 2022, 37(18): 4745-4756. Li Shan, Ma Wen, Guo Qiang, et al.Optimal predictive power control of PWM rectifier under nonideal grid conditions[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4745-4756. [6] 李小强, 马永超, 黄金伟, 等. 基于双脉宽调制的交错Boost集成型CLLLC谐振变换器宽增益控制策略[J]. 电工技术学报, 2022, 37(20): 5313-5323. Li Xiaoqiang, Ma Yongchao, Huang Jinwei, et al.Wide-gain-range control scheme for interleaved Boost integrated CLLLC resonant converter based on dual pulse width modulation[J]. Transactions of China Electrotechnical Society, 2022, 37(20): 5313-5323. [7] 孟建辉, 吴小龙, 张自力, 等. 三相隔离型AC-DC-DC电源自适应线性自抗扰控制方法及纹波抑制补偿策略[J]. 电工技术学报, 2023, 38(14): 3898-3908. Meng Jianhui, Wu Xiaolong, Zhang Zili, et al.Adaptive linear active disturbance rejection control method and ripple suppression compensation strategy for three-phase isolated AC-DC-DC power supply[J]. Transactions of China Electrotechnical Society, 2023, 38(14): 3898-3908. [8] 杨达亮, 彭祖文, 刘金宝, 等. 一种无延时单相并网变换器dq电流解耦控制方法[J]. 电网技术, 2022, 46(4): 1585-1593, 49. Yang Daliang, Peng Zuwen, Liu Jinbao, et al.d-q current decoupling for single-phase grid-connected converter based on non-delay[J]. Power System Technology, 2022, 46(4): 1585-1593, 49. [9] 王立乔, 陈建医, 程超然, 等. 单级单相无电解电容Buck-Boost逆变器[J]. 电工技术学报, 2023, 38(24): 6768-6781. Wang Liqiao, Chen Jianyi, Cheng Chaoran, et al.A single-stage single-phase Buck-Boost inverter without electrolytic capacitor[J]. Transactions of China Elec-trotechnical Society, 2023, 38(24): 6768-6781. [10] 桑汐坤, 王懿杰, 徐殿国. 基于输入并联输出串联的高效高升压比DC-DC变换器[J]. 电工技术学报, 2023, 38(20): 5488-5502. Sang Xikun, Wang Yijie, Xu Dianguo.High-efficiency high voltage gain DC-DC converter based on input parallel and output series connection[J]. Transactions of China Electrotechnical Society, 2023, 38(20): 5488-5502. [11] 李慧慧, 皇金锋. 单电感双输出Buck-Boost变换器的非最小相位特性分析及控制策略[J]. 电工技术学报, 2023, 38(14): 3875-3887. Li Huihui, Huang Jinfeng.Analysis of non-minimum phase characteristics and control strategies for single-inductor dual-output Buck-Boost converters[J]. Transactions of China Electrotechnical Society, 2023, 38(14): 3875-3887. [12] Liu Bin, Wang Hui, Yang Yongheng, et al.Improved model predictive control for single-phase grid-tied inverter with virtual vectors in the compacted solution-space[J]. IEEE Transactions on Industrial Electronics, 2022, 69(9): 9673-9678. [13] 王章毅, 陆道荣, 李想, 等. 基于移相和调频的单级双向AC-DC变换器临界电流调制策略[J]. 电工技术学报, 2023, 38(14): 3888-3897. Wang Zhangyi, Lu Daorong, Li Xiang, et al.Boundary current modulation strategy of single-stage bidirectional AC-DC converter based on phase-shift and variable-frequency control[J]. Transactions of China Electrotechnical Society, 2023, 38(14): 3888-3897. [14] 周国华, 王淇, 邓伦博. 宽增益高效率CLLLC变换器的变频双移相调制策略[J]. 电工技术学报, 2024, 39(8): 2511-2522. Zhou Guohua, Wang Qi, Deng Lunbo.Variable-frequency dual-phase-shift modulation strategy for CLLLC converter with wide voltage gain and high efficiency[J]. Transactions of China Electrotechnical Society, 2024, 39(8): 2511-2522. [15] 孙瑄瑨, 荣德生, 王宁. 具有谐振软开关的高增益耦合电感组合Boost-Zeta变换器[J]. 电工技术学报, 2024, 39(6): 1830-1842. Sun Xuanjin, Rong Desheng, Wang Ning.High step-up integrated Boost-Zeta converter with coupled inductor and resonant soft-switching[J]. Transactions of China Electrotechnical Society, 2024, 39(6): 1830-1842. [16] 高娟, 秦岭, 茅靖峰, 等. 分体式储能VSG功率转换系统输出电压鲁棒控制器设计[J]. 电网技术, 2022, 46(1): 213-219, 11-12. Gao Juan, Qin Ling, Mao Jingfeng, et al. Output voltage robust controller design for the power converter system in the assembled VSG[J]. Power System Technology, 2022, 46(1): 213-219, 11-12. [17] Wong C S, Liu Junwei, Cao Lingling, et al.A SWISS-rectifier-based single-stage three-phase bidi-rectional AC-DC inductive-power-transfer converter for vehicle-to-grid applications[J]. IEEE Transactions on Power Electronics, 2023, 38(3): 4152-4166. [18] Zhang Jianhua, Ding Hao, Wang Baocheng, et al.Active power decoupling for current source converters: an overview scenario[J]. Electronics, 2019, 8(2): 197. [19] Vairavasundaram I, Varadarajan V, Pavankumar P J, et al.A review on small power rating PV inverter topologies and smart PV inverters[J]. Electronics, 2021, 10(11): 1296. [20] 王立乔, 张检亮, 管成功, 等. 基于非线性载波调制的单相电流型逆变器的研究[J]. 太阳能学报, 2021, 42(12): 435-442. Wang Liqiao, Zhang Jianliang, Guan Chenggong, et al.Research on single-phase current source inverter based on nonlinear carrier modulation[J]. Acta Energiae Solaris Sinica, 2021, 42(12): 435-442. [21] 张宇尧. 小储能电感单相电流型并网逆变器研究[D]. 秦皇岛: 燕山大学, 2020. Zhang Yuyao.Research on single-phase current source grid-connected inverter with small energy storage inductor[D]. Qinhuangdao: Yanshan University, 2020. [22] Wang Haoran, Wang Huai, Zhu Guorong, et al.An overview of capacitive DC-links-topology derivation and scalability analysis[J]. IEEE Transactions on Power Electronics, 2020, 35(2): 1805-1829. [23] Wang Lei, Li Huan, Li Sinan.Burst mode control of active-power-decoupling integrated active clamp flyback PFC rectifiers[J]. IEEE Transactions on Power Electronics, 2023, 38(5): 6337-6350. [24] Deshmukh N, Prabhakar S, Anand S.Power loss reduction in Buck converter based active power decoupling circuit[J]. IEEE Transactions on Power Electronics, 2021, 36(4): 4316-4325. [25] Sun Yao, Liu Yonglu, Su Mei, et al.Review of active power decoupling topologies in single-phase systems[J]. IEEE Transactions on Power Electronics, 2016, 31(7): 4778-4794. [26] Harb S, Mirjafari M, Balog R S.Ripple-port module-integrated inverter for grid-connected PV applications[J]. IEEE Transactions on Industry Appli-cations, 2013, 49(6): 2692-2698. [27] Vitorino M A, Hartmann L V, Fernandes D A, et al.Single-phase current source converter with new modulation approach and power decoupling[C]//2014 IEEE Applied Power Electronics Conference and Exposition-APEC, Fort Worth, TX, USA, 2014: 2200-2207. [28] Liu Yonglu, Sun Yao, Su Mei.Active power compensation method for single-phase current source rectifier without extra active switches[J]. IET Power Electronics, 2016, 9(8): 1719-1726. [29] Sun Yao, Liu Yonglu, Su Mei, et al.Active power decoupling method for single-phase current-source rectifier with no additional active switches[J]. IEEE Transactions on Power Electronics, 2016, 31(8): 5644-5654. [30] 林智乐, 何良宗, 周鸿彦. 基于有源负电容的电压源型逆变器直流母线二次功率脉动的抑制方法[J]. 中国电机工程学报, 2021, 41(22): 7772-7781, 21. Lin Zhile, He Liangzong, Zhou Hongyan.Suppressing secondary power pulsation method for DC bus of voltage source inverter based on active negative capacitor[J]. Proceedings of the CSEE, 2021, 41(22): 7772-7781, 21.