A Dual-Output T-Type Three-Level Inverter Topology Based on Split Source Inverter
Wang Rutian1, Wang Hao1, Yuan Shuai2, Shao Xinming1, Liu Chuang1
1. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology Ministry of Education Northeast Electric Power University Jilin 132012 China; 2. School of Electrical Engineering Southeast University Nanjing 210096 China
Abstract:Multi-level inverters perform better than two-level inverters. Using dual output inverters to reduce the number of switching tubes is a trend in developing power electronic topologies for cost reasons. The conventional voltage-source inverter is a buck topology. In many application scenarios, a DC boost topology is often added before the inverter topology to meet the high-magnitude requirements of the output-side voltage. This paper proposed a dual output T-type three-level inverter topology based on a split-source inverter (SSI) using SSI topology to improve the dual output T-type three-level converter. The SSI topology can reduce the high-magnitude requirements for the DC supply voltage and hardware cost, improving power efficiency. The hardware cost was saved by multiplexing the switching tubes in the inverter and DC boost links. The DC supply voltage passed through the SSI topology and charged the capacitor on the DC side of the inverter link. Thus, the DC side voltage of the inverter link was high, i.e., the high-magnitude requirement of the DC supply voltage was reduced. The energy transfer path was shortened, and the power efficiency was improved. A separate SSI topology controls the capacitor voltage. The charging of each DC-side capacitor in inverter was completed by a separate SSI topology, and the capacitor charge or discharge duty cycle was controlled by the modulation process of the inverter. If the capacitor is charged and discharged normally, even in the case of open-loop control, the capacitor voltage will not lose stability, thus simplifying the control of the neutral-point potential balance. A method for determining the range of modulation parameters based on the input and output parameters of the operating parameters was proposed. The boost multiple of the DC link is related to the modulation parameters, and the input parameters are related to the capacitor voltages and modulation parameters of the inverter link. Therefore, combined with the constraint relationship, this paper proposed a method to determine the range of modulation parameters. The range of modulation parameters was discussed under in-phase common frequency (CF), non-in-phase CF, and different frequency (DF) operation modes. This paper discussed the fluctuation of the inductor current under the sinusoidal pulse width modulation (SPWM) scheme and the harmonic injection SPWM scheme with different harmonics in the sinusoidal modulation wave. Firstly, the harmonic component of the inductor current under the SPWM scheme was discussed. Then, the harmonicamplitude in the third harmonic injection PWM, the Max-Min PWM scheme in the space-vector pulse width carrier modulation, and the DC offset of the discontinuous PWM scheme in the SVPWM were discussed. Finally, the experimental prototype was built. The experiments were carried out in CF and DF operation modes, which verifies the proposed topology, the modulation parameter selection method, and different modulation schemes on the low-frequency ripple content under the same hardware conditions.
王汝田, 王浩, 袁帅, 邵鑫铭, 刘闯. 一种基于分裂源的双输出T型三电平逆变器[J]. 电工技术学报, 2024, 39(24): 7777-7792.
Wang Rutian, Wang Hao, Yuan Shuai, Shao Xinming, Liu Chuang. A Dual-Output T-Type Three-Level Inverter Topology Based on Split Source Inverter. Transactions of China Electrotechnical Society, 2024, 39(24): 7777-7792.
[1] 郭立东, 雷鸣宇, 杨子龙, 等. 光储微网系统多目标协调控制策略[J]. 电工技术学报, 2021, 36(19): 4121-4131. Guo Lidong, Lei Mingyu, Yang Zilong, et al.Multi-objective coordinated control strategy for photo-voltaic and energy-storage microgrid system[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4121-4131. [2] 陆秋瑜, 马千里, 魏韡, 等. 基于置信容量的风场配套储能容量优化配置[J]. 电工技术学报, 2022, 37(23): 5901-5910. Lu Qiuyu, Ma Qianli, Wei Wei, et al.Optimal configuration of energy storage parameters based on confidence capacity of wind farms[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 5901-5910. [3] 李建林, 梅生伟, 李军徽. 新型储能系统应用关键技术专题特约主编寄语[J]. 电工技术学报, 2022, 37(23): 5899-5900. Li Jianlin, Mei Shengwei, Li Junhui.Message from special editor-in-chief on key technologies of new energy storage system application[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 5899-5900. [4] Peng Weiwen, Chen Qianling, Manandhar U, et al.Event-triggered model predictive control for the inverter of a grid-connected microgrid with a battery-supercapacitor HESS[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(6): 5540-5552. [5] 韩雪, 贺荣栋, 凌志斌. 部分接入电池储能系统的模块化多电平换流器控制方法[J]. 电力系统自动化, 2024, 48(1): 100-108. Han Xue, He Rongdong, Ling Zhibin.Control method of modular multilevel converter with partly integrated battery energy storage system[J]. Automation of Electric Power Systems, 2024, 48(1): 100-108. [6] 时瑞廷, 杨贺钧, 马英浩, 等. 计及峰谷平滑效益的需求响应和电池储能系统调度联合优化策略[J]. 电力自动化设备, 2023, 43(8): 49-55. Shi Ruiting, Yang Hejun, Ma Yinghao, et al.Joint optimization strategy of demand response and battery energy storage system dispatch considering peak-valley smoothing benefit[J]. Electric Power Auto-mation Equipment, 2023, 43(8): 49-55. [7] 孙毅, 李飞, 胡亚杰, 等. 计及条件风险价值和综合需求响应的产消者能量共享激励策略[J]. 电工技术学报, 2023, 38(9): 2448-2463. Sun Yi, Li Fei, Hu Yajie, et al.Energy sharing incentive strategy of prosumers considering con-ditional value at risk and integrated demand response[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2448-2463. [8] 胡文华, 文森林, 彭修纲, 等. 一种新型多电平逆变器拓扑及调制策略研究[J]. 太阳能学报, 2024, 45(7): 486-493. Hu Wenhua, Wen Senlin, Peng Xiugang, et al.Research on a novel multilevel inverter topology and modulation strategy[J]. Acta Energiae Solaris Sinica, 2024, 45(7): 486-493. [9] 于晶荣, 张刚, 邱均成, 等. 一种级联H桥多电平逆变器故障诊断方法[J]. 电机与控制学报, 2023, 27(9): 119-125. Yu Jingrong, Zhang Gang, Qiu Juncheng, et al.Fault diagnosis method for cascaded H-bridge multilevel inverter[J]. Electric Machines and Control, 2023, 27(9): 119-125. [10] Bastos R R, Santos de Souza T, de Carvalho M M, et al. Assessment of a nine-phase induction motor drive for metal industry applications[J]. IEEE Transactions on Industry Applications, 2020, 56(6): 7217-7226. [11] Srivastava A, Seshadrinath J.A new nine-level highly efficient boost inverter for transformerless grid-connected PV application[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(3): 2730-2741. [12] Zhao Tao, Chen Daolian.A power adaptive control strategy for further extending the operation range of single-phase cascaded H-bridge multilevel PV inverter[J]. IEEE Transactions on Industrial Elec-tronics, 2022, 69(2): 1509-1520. [13] 叶满园, 刘文芳, 喻生铭, 等. 新型八开关五电平逆变器及功率均衡调制策略[J]. 电机与控制学报, 2023, 27(5): 138-148. Ye Manyuan, Liu Wenfang, Yu Shengming, et al.Novel eight-switch five-level inverter and power balance modulation strategy[J]. Electric Machines and Control, 2023, 27(5): 138-148. [14] Biswas S P, Shamim Anower M, Haq S, et al.A new level shifted carrier based PWM technique for a 5-level multilevel inverter used in induction motor drives[C]//2021 IEEE Industry Applications Society Annual Meeting (IAS), Vancouver, BC, Canada, 2021: 1-6. [15] 王晓标, 肖华平, 牛晨晖, 等. 高可靠三电平逆变器构造方法研究[J]. 中国电机工程学报, 2023, 43(10): 3928-3937. Wang Xiaobiao, Xiao Huaping, Niu Chenhui, et al.Research on highly reliable three-level inverters construction principles[J]. Proceedings of the CSEE, 2023, 43(10): 3928-3937. [16] Meynard T A, Foch H.Multi-level conversion: high voltage choppers and voltage-source inverters[C]//PESC '92 Record. 23rd Annual IEEE Power Elec-tronics Specialists Conference, Toledo, Spain, 1992: 397-403. [17] 叶满园, 喻生铭, 刘文芳, 等. 不对称级联九电平逆变器线性功率均衡控制策略[J]. 电工技术学报, 2024, 39(14): 4495-4507. Ye Manyuan, Yu Shengming, Liu Wenfang, et al.Linear power balance strategy for asymmetric cascaded H-bridge nine-level inverter[J]. Transa-ctions of China Electrotechnical Society, 2024, 39(14): 4495-4507. [18] 申永鹏, 王帅兵, 梁伟华, 等. T型三电平逆变器合成脉冲宽度调制相电流重构策略[J]. 电工技术学报, 2022, 37(20): 5302-5312. Shen Yongpeng, Wang Shuaibing, Liang Weihua, et al.T-type three-level inverter composite pulse width modulation phase current reconstruction strategy[J]. Transactions of China Electrotechnical Society, 2022, 37(20): 5302-5312. [19] Jayan V, Ghias A M Y M. Operational limits of a cascaded dual-output multilevel converter using model predictive control[J]. IEEE Transactions on Power Electronics, 2021, 36(6): 7026-7037. [20] 王贵峰, 王建飞. 基于单桥臂独立模型预测电流控制的新型十五开关三电平双输出逆变器研究[J/OL]. 电源学报, 1-12 [2023-11-16]. http://kns.cnki.net/kcms/detail/12.1420.TM.20231130.0856.002.html. Wang Guifeng, Wang Jianfei. Novel fifteen-switch three-level dual-output inverter based on single-leg independent model predictive current control[J/OL]. Journal of Power Supply, 1-12 [2023-11-16]. http://kns.cnki.net/kcms/detail/12.1420.TM.20231130.0856.002.html. [21] Do D T, Cha H.High-reliability and reduced switch count single-phase dual-output current source inverter using switching-cell structure[J]. IEEE Transactions on Power Electronics, 2021, 36(6): 6513-6524. [22] Kominami T, Fujimoto Y.A novel nine-switch inverter for independent control of two three-phase loads[C]//2007 IEEE Industry Applications Annual Meeting, New Orleans, LA, USA, 2007: 2346-2350. [23] 赵牧天, 葛琼璇, 朱进权, 等. 高速磁浮背靠背三电平ANPC变流器中点电压偏移机理与协同控制策略[J]. 中国电机工程学报, 2024, 44(5): 1932-1947, I0023. Zhao Mutian, Ge Qiongxuan, Zhu Jinquan, et al.Neutral point voltage offset mechanism and coopera-tive control strategy of high-speed maglev back-to-back three-level ANPC converter[J]. Proceedings of the CSEE, 2024, 44(5): 1932-1947, I0023. [24] Dong Zhiqiang, Wang Chenchen, Cui Kai, et al.Neutral-point voltage-balancing strategies of NPC-inverter fed dual three-phase AC motors[J]. IEEE Transactions on Power Electronics, 2021, 36(3): 3181-3191. [25] Azizi M, Aznavi S, Fajri P, et al.Space vector modulation scheme for dual-output four-leg inverter[C]//2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 2020: 2937-2943. [26] Dwivedi D, Roy I, Chinmaya K A.Investigation of three-level dual output T-type NPC for EV appli-cation[C]//2022 International Conference on Smart Energy Systems and Technologies (SEST), Eindhoven, Netherlands, 2022: 1-6. [27] 王海超, 范学鑫, 杨国润, 等. 超级电容充电三电平双输出直流变换器设计[J]. 高电压技术, 2020, 46(9): 3268-3274. Wang Haichao, Fan Xuexin, Yang Guorun, et al.Design of three-level dual-output DC-DC converter for ultracapacitor applications[J]. High Voltage Engineering, 2020, 46(9): 3268-3274. [28] Wang Rutian, Ai Lan, Liu Chuang.A novel three-phase dual-output neutral-point-clamped three-level inverter[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 7576-7586. [29] Wang Rutian, Yuan Shuai, Liu Chuang, et al.A three-phase dual-output T-type three-level converter[J]. IEEE Transactions on Power Electronics, 2023, 38(2): 1844-1859. [30] 胡雪峰, 汪慧茹, 徐晗, 等. 一种单相非隔离集成升压光伏逆变器[J]. 中国电机工程学报, 2023, 43(16): 6429-6440. Hu Xuefeng, Wang Huiru, Xu Han, et al.A single-phase non-isolated integrated step-up photovoltaic inverter[J]. Proceedings of the CSEE, 2023, 43(16): 6429-6440. [31] Peng Fangzheng.Z-source inverter[J]. IEEE Transa-ctions on Industry Applications, 2003, 39(2): 504-510. [32] Abdelhakim A, Mattavelli P, Spiazzi G.Three-phase split-source inverter (SSI): analysis and modulation[J]. IEEE Transactions on Power Electronics, 2016, 31(11): 7451-7461. [33] Dabour S M, Aboushady A A, Gowaid I A, et al.Analysis and control of simplified dual-output single-phase split-source Boost inverters[C]//2022 23rd International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 2022: 1-5.