TiO2@SiO2 Research on Synergistically Improving the Insulation Performance of Polypropylene Film with Montmorillonite Nanomaterials
Xie Jun1, Liu Qi1, Li Lin1, Liu Ziqian1, Xie Qing2
1. Department of Electric Power Engineering North China Electric Power University Baoding 071003 China;
2. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electrical Power University Beijing 102206 China
Polypropylene (PP) exhibits excellent insulation properties and recyclability, making it a valuable material for promoting the green transformation of power grids. Polypropylene film possesses high dielectric strength and superior heat resistance, making it a widely utilized component in dry film capacitors. These capacitors are primarily employed in ultra-high voltage DC transmission systems, where they provide essential functions such as damping, voltage support, and commutation assistance. The performance of dry film capacitors is largely dependent on the insulation quality of the polypropylene film. During operation, these capacitors must endure transient overvoltages and harmonics. A breakdown in the internal polypropylene film can lead to the failure of the entire capacitor group, compromising power stability. Therefore, enhancing the insulation performance of polypropylene film is critical for ensuring the reliable operation of ultra-high voltage transmission systems.
Physical doping involves the incorporation of nanoparticles into a matrix to produce composite dielectric materials. Common nanofillers are categorized based on their dimensions, typically including zero-dimensional particles and two-dimensional sheet structures. Zero-dimensional particles generally possess a high dielectric constant. When these particles are used as dopants, they enhance the electric field distribution within the matrix, thereby increasing the breakdown strength. However, the considerable dielectric constant difference at the nanoparticle interface can induce interface distortion, which limits the improvement in breakdown strength. In contrast, two-dimensional sheet structures have a large surface area that can impede the development of breakdown paths within the matrix. This blocking effect is most effective when the sheets are densely distributed, as they form a network that effectively obstructs breakdown paths. Nonetheless, high-density distribution also facilitates carrier mobility, which can adversely affect the increase in breakdown strength. Therefore, zero-dimensional nanofillers and two-dimensional nanofillers possess complementary advantages and disadvantages. Currently, there is limited research on how to effectively combine the advantages of these two types of nanofillers.
This study combines zero-dimensional TiO2@SiO2 and two-dimensional montmorillonite (MMT) through sintering to create a multidimensional nanofiller. Experimental results demonstrate that two-dimensional MMT introduces additional interfaces, leading to an increase in the melting temperature and crystallinity of the polypropylene (PP) film. The incorporation of TiO2@SiO2 nanoparticles creates more traps, thereby improving the dispersion of the two-dimensional MMT and enhancing the dielectric properties of the PP film. Furthermore, the SiO2 shell mitigates the extent of electric field distortion. Breakdown testing results indicate that at a 1.0% filler ratio, the insulation performance is optimal. Specifically, at 25℃, the breakdown strength of the PP film increased by 34.5%, while at 50℃ and 75℃, the breakdown strength increased by 33.51% and 31.96%, respectively. To elucidate the microscopic interaction mechanisms of the two-dimensional nanoparticles, phase field simulation was employed. The variable η(r, t) represents the evolution of the matrix, where η(r, t) = 1 corresponds to the breakdown phase, η(r, t) = 0 denotes the non-breakdown phase, and values of η(r, t) between 0 and 1 represent the transition region. Simulation results indicate that doping with two-dimensional MMT probabilistically inhibits the development of breakdown paths. When the matrix is filled with a combination of two-dimensional MMT and TiO2@SiO2 nanoparticles, TiO2@SiO2 attracts the growth of electric trees. This shifts the blocking mechanism from probabilistic to directional, making it more difficult for the polypropylene film to undergo complete breakdown, thereby enhancing its breakdown strength.
谢军, 刘麒, 李霖, 刘子谦, 谢庆. TiO2@SiO2与蒙脱土纳米材料协同提升聚丙烯薄膜绝缘性能研究[J]. 电工技术学报, 0, (): 2492933-2492933.
Xie Jun, Liu Qi, Li Lin, Liu Ziqian, Xie Qing. TiO2@SiO2 Research on Synergistically Improving the Insulation Performance of Polypropylene Film with Montmorillonite Nanomaterials. Transactions of China Electrotechnical Society, 0, (): 2492933-2492933.
[1] Zhao Wenjing, Kumar Kundu C, Li Zhiwei, et al.Flame retardant treatments for polypropylene: strategies and recent advances[J]. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106382.
[2] 杜伯学, 冉昭玉, 刘浩梁, 等. 干式直流电容器聚丙烯薄膜绝缘性能及其改进方法研究进展[J]. 电工技术学报, 2023, 38(5): 1363-1374.
Du Boxue, Ran Zhaoyu, Liu Haoliang, et al.Research progress of dielectric properties and improvement methods of polypropylene film for dry-type capacitor[J]. Transactions of China Electrotechnical Society, 2023, 38(5): 1363-1374.
[3] 杜伯学, 李忠磊, 周硕凡, 等. 聚丙烯高压直流电缆绝缘研究进展与展望[J]. 电气工程学报, 2021, 16(2): 2-11.
Du Boxue, Li Zhonglei, Zhou Shuofan, et al.Research progress and perspective of polypropylene-based insulation for HVDC cables[J]. Journal of Electrical Engineering, 2021, 16(2): 2-11.
[4] 党智敏. 干式直流电容器全链条国产化关键技术探讨[J]. 电力电容器与无功补偿, 2024, 45(1): 1-14.
Dang Zhimin.Discussion on key technology for localization of full-chain of dry DC capacitor[J]. Power Capacitor & Reactive Power Compensation, 2024, 45(1): 1-14.
[5] 黎鹏, 邱雨, 岳国华, 等. 基于磁—结构场耦合的干式直流电容器短路特性分析[J/OL]. 高压电器, 2024, 1-9[2024-04-08]. http://kns.cnki.net/kcms/detail/61.1127.TM.20240327.1509.002.html.
Li Peng, Qiu Yu, Yue Guohua, et al. Analysis of short circuit characteristics of dry-type DC capacitor based on magnetic-structural field coupling[J/OL]. High Voltage Apparatus, 2024, 1-9[2024-04-08]. http://kns.cnki.net/kcms/detail/61.1127.TM.20240327.1509.002.html.
[6] Gnonhoue O G, Velazquez-Salazar A, David É, et al.Review of technologies and materials used in high-voltage film capacitors[J]. Polymers, 2021, 13(5): 766.
[7] 张传升, 章程, 任成燕, 等. 聚丙烯基薄膜储能的影响机制及优化策略研究进展[J]. 电工技术学报, 2024, 39(7): 2193-2213.
Zhang Chuansheng, Zhang Cheng, Ren Chengyan, et al.Research progress on influence mechanisms and optimization strategies for energy storage in polypropylene-based films[J]. Transactions of China Electrotechnical Society, 2024, 39(7): 2193-2213.
[8] Streibl M, Werner S, Kaschta J, et al.The influence of nanoparticles and their functionalization on the dielectric properties of biaxially oriented polypropylene for power capacitors[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(2): 468-475.
[9] Ren Lulu, Li He, Xie Zongliang, et al.High-temperature high-energy-density dielectric polymer nanocomposites utilizing inorganic core-shell nanostructured nanofillers[J]. Advanced Energy Materials, 2021, 11(28): 2101297.
[10] Zhu Yingke, Zhu Yujie, Huang Xingyi, et al.High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets[J]. Advanced Energy Materials, 2019, 9(40): 1901826.
[11] Cui Yexiang, Bao Di, Xu Fei, et al.Fabrication of EVA connected 3D BN network for enhancing the thermal conductivity of epoxy composites[J]. Composites Part B: Engineering, 2021, 224: 109203.
[12] Yang Minzheng, Li Haoyang, Wang Jian, et al.Roll-to-roll fabricated polymer composites filled with subnanosheets exhibiting high energy density and cyclic stability at 200?℃[J]. Nature Energy, 2024, 9: 143-153.
[13] 张晓虹, 石泽祥, 张双, 等. 基于局部放电特征研究蒙脱土/聚乙烯纳米复合材料的电树枝性能[J]. 电工技术学报, 2019, 34(23): 5049-5057.
Zhang Xiaohong, Shi Zexiang, Zhang Shuang, et al.Investigation on electrical tree resistance property of montmorillonite/polyethylene nanocomposites based on partial discharge characteristics[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 5049-5057.
[14] Liu Biao, Yang Minhao, Zhou Wenying, et al.High energy density and discharge efficiency polypropylene nanocomposites for potential high-power capacitor[J]. Energy Storage Materials, 2020, 27: 443-452.
[15] 张明艳, 王晨, 吴淑龙, 等. 碳纳米管、蒙脱土共掺杂环氧树脂复合材料介电性能研究[J]. 电工技术学报, 2016, 31(10): 151-158.
Zhang Mingyan, Wang Chen, Wu Shulong, et al.Research on dielectric properties of epoxy resin composites doped with carbon nanotubes and montmorillonite[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 151-158.
[16] Li Zhonglei, Fan Mingsheng, Zhou Shuofan, et al.BNNS encapsulated TiO2 nanofillers endow polypropylene cable insulation with enhanced dielectric performance[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(4): 1238-1246.
[17] Li Xiang, Du Qiangguo, Kang Jie, et al.Influence of microstructure on space charges of polypropylene[J]. Journal of Polymer Science Part B: Polymer Physics, 2002, 40(4): 365-374.
[18] Shen Zhonghui, Wang Jianjun, Jiang Jianyong, et al.Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics[J]. Nature Communications, 2019, 10(1): 1843.
[19] Wang Jian, Shen Zhonghui, Liu Runlin, et al.Texture engineering modulating electromechanical breakdown in multilayer ceramic capacitors[J]. Advanced Science, 2023, 10(16): e2300320.
[20] 刘峰强, 王黎明, 徐丽慧, 等. 锐钛矿相二氧化钛纳米棒的制备及其光催化性能研究[J]. 化工新型材料, 2023, 51(7): 282-285.
Liu Fengqiang, Wang Liming, Xu Lihui, et al.Preparation and photocatalytic properties of anatase phase titaniumdioxide nanorods[J]. New Chemical Materials, 2023, 51(7): 282-285.
[21] Tang Fangqi, Tan Yu, Jiang Tingting, et al.Phosphorus-doped silicon nanoparticles as high performance LIB negative electrode[J]. Journal of Materials Science, 2022, 57(4): 2803-2812.
[22] Hong Wangbing, Meng Jie, Li Changdong, et al.Effects of temperature on structural properties of hydrated montmorillonite: experimental study and molecular dynamics simulation[J]. Advances in Civil Engineering, 2020, 2020(1): 8885215.
[23] Xu Ranran, Du Boxue, Xiao Meng, et al.Dielectric properties dependent on crystalline morphology of PP film for HVDC capacitors application[J]. Polymer, 2021, 213: 123204.
[24] 樊林禛, 李琦, 袁浩, 等. 接枝对聚丙烯绝缘材料热氧老化的影响及机理[J]. 中国电机工程学报, 2022, 42(11): 4227-4237.
Fan Linzhen, Li Qi, Yuan Hao, et al.Influence and mechanism of grafting on thermal oxidative aging of polypropylene[J]. Proceedings of the CSEE, 2022, 42(11): 4227-4237.
[25] 高宇, 王小芳, 李楠, 等. 聚合物绝缘材料载流子陷阱的表征方法及陷阱对绝缘击穿影响的研究进展[J]. 高电压技术, 2019, 45(7): 2219-2230.
Gao Yu, Wang Xiaofang, Li Nan, et al.Characterization method for carrier trap and the effect on insulation breakdown within polymer insulating materials: a review[J]. High Voltage Engineering, 2019, 45(7): 2219-2230.
[26] 樊林禛, 郝国辉, 张雯嘉, 等. 接枝苯乙烯对聚丙烯绝缘材料介电性能的影响[J]. 中国电机工程学报, 2023, 43(13): 5251-5260.
Fan Linzhen, Hao Guohui, Zhang Wenjia, et al.Effect of grafting styrene on the dielectric properties of polypropylene insulating material[J]. Proceedings of the CSEE, 2023, 43(13): 5251-5260.
[27] 彭兆伟, 关永刚, 张灵, 等. β 成核剂含量对等规聚丙烯电导电流和空间电荷特性的影响[J]. 电工技术学报, 2019, 34(7): 1527-1535.
Peng Zhaowei, Guan Yonggang, Zhang Ling, et al.Influence of β-nucleating agent content on conduction current and space charge characteristics in isotactic polypropylene[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 1527-1535.
[28] 郑明胜, 查俊伟, 党智敏. 新型高储能密度聚合物基绝缘材料[J]. 电工技术学报, 2017, 32(16): 37-43.
Zheng Mingsheng, Zha Junwei, Dang Zhimin.Advanced polymer-based insulating materials with high energy storage density[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 37-43.
[29] 冯宇, 程伟晔, 岳东, 等. 含有氮化硼势垒层的三明治结构聚合物基复合介质储能特性研究[J]. 电工技术学报, 2024, 39(1): 121-134.
Feng Yu, Cheng Weiye, Yue Dong, et al.Energy storage performance of sandwich structure polymer-based composite dielectric with boron nitride barrier layer[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 121-134.
[30] Zhang Wenjia, Hu Shixun, Zhang Yaru, et al.Influence of grafting modification on high-temperature electrical treeing characteristics of polypropylene cable insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2023, 30(5): 2142-2149.
[31] 胡丽斌, 张传升, 谭笑, 等. 退役电缆附件微观结构与电荷特性研究[J]. 中国电机工程学报, 2021, 41(2): 770-780.
Hu Libin, Zhang Chuansheng, Tan Xiao, et al.Research on microstructure and charge characteristics of cable accessories out of service[J]. Proceedings of the CSEE, 2021, 41(2): 770-780.
[32] 李鹏新, 崔浩喆, 邢照亮, 等. 环氧/POSS复合电介质介电与热学性能[J]. 电工技术学报, 2022, 37(2): 291-298.
Li Pengxin, Cui Haozhe, Xing Zhaoliang, et al.Dielectric and thermal properties of epoxy/POSS composites[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 291-298.
[33] Zhang Fei, Feng Yiyu, Feng Wei.Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms[J]. Materials Science and Engineering: R: Reports, 2020, 142: 100580.
[34] 李丽丽, 张晓虹, 王玉龙, 等. 电场和温度对聚合物空间电荷陷阱性能的影响[J]. 物理学报, 2017, 66(8): 307-317.
Li Lili, Zhang Xiaohong, Wang Yulong, et al.Simulations of the effects of electric field and temperature on space charge traps in polymer[J]. Acta Physica Sinica, 2017, 66(8): 307-317.
[35] 南江, 刘诚威, 夏平安. 聚四氟乙烯/纳米碳化硅改性复合材料的制备及其介电特性[J]. 电工技术学报, 2021, 36(增刊1): 1-7.
Nan Jiang, Liu Chengwei, Xia Pingan.Preparation and dielectric characteristics of nano-SiC/PTFE composite[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 1-7.
[36] 张宏亮, 黄宁, 刘鹏, 等. 含水率对环氧浸渍纸低频介电弛豫过程的影响研究[J/OL]. 电工技术学报, 2024, 1-13[2024-04-08]. https://doi.org/10.19595/j.cnki.1000-6753.tces.232087.
Zhang Hongliang, Huang Ning, Liu Peng, et al. Effect of water content on low frequency dielectric relaxation of epoxy resinImpregnated paper[J/OL]. Transactions of China Electrotechnical Society, 2024, 1-13[2024-04-08]. https://doi.org/10.19595/j.cnki.1000-6753.tces.232087.
[37] 蒋毅恺, 徐曼, 王若霏, 等. 电缆绝缘用聚丙烯/弹性体复合材料的高温介电性能[J]. 电工技术学报, 2024, 39(1): 99-109.
Jiang Yikai, Xu Man, Wang Ruofei, et al.High temperature dielectric properties of polypropylene and elastomer blends for cable insulation[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 99-109.
[38] Shi Zhicheng, Wang Jing, Mao Fan, et al.Significantly improved dielectric performances of sandwich-structured polymer composites induced by alternating positive-k and negative-k layers[J]. Journal of Materials Chemistry A, 2017, 5(28): 14575-14582.