Recent Research Progress of Cold Sintering Process and Its Potential Application in Electrotechnical Fields
Kang Shenglin1, Zhao Xuetong1, Zhang Jiexin1, Guo Jing2, Yang Lijun1
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 2. State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China
Abstract:A high sintering temperature of more than 1 000℃ is typically needed for the densification of ceramic materials, which can bring about a great challenge on the phase stability, grain boundary control and co-sintering of ceramic matrix composites. Recently, an extremely low sintering technique named cold sintering process (CSP) was proposed, which refers to a pressure-assisted transient liquid phase sintering process to effect densification by a mediated dissolution-precipitation process at ≤300℃. CSP shows a significant advantage in the sintering of ceramics due to the low-temperature and time-saving characteristics. In this work, the research progress of CSP was reviewed based on the sintering mechanism and its applications in electrotechnical fields. Firstly, the densification process and preparation technology of the CSP ceramics were introduced. Then, the categories of the transient liquid phases, and their roles in the CSP were analyzed. Moreover, the applications of CSP in new electric materials such as ceramic-polymer composites (varistors, pyroelectricity, electrolyte), ceramic-2D materials (pyroelectricity), high-gradient ZnO varistors and ceramic-metal multilayer structures (capacitor) were presented. Finally, the combination of CSP with other sintering techniques were discussed. CSP provides a scientific reference for the study of sintering mechanism at extreme low temperatures, and a new route for the development of novel functional ceramics and ceramic-based composites applied in electrotechnical fields.
康晟淋, 赵学童, 张洁心, 郭靖, 杨丽君. 冷烧结技术的研究进展及其在电工领域的潜在应用[J]. 电工技术学报, 2022, 37(5): 1098-1114.
Kang Shenglin, Zhao Xuetong, Zhang Jiexin, Guo Jing, Yang Lijun. Recent Research Progress of Cold Sintering Process and Its Potential Application in Electrotechnical Fields. Transactions of China Electrotechnical Society, 2022, 37(5): 1098-1114.
[1] Rahaman M N.Ceramic processing and sintering[M]. Boca Raton: CRC Press, 2003. [2] 姚睿丰, 王妍, 高景晖, 等. 压电材料与器件在电气工程领域的应用[J]. 电工技术学报, 2021, 36(7): 1324-1337. Yao Ruifeng, Wang Yan, Gao Jinghui, et al.Applications of piezoelectric materials and devices in electric engineering[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1324-1337. [3] 顼佳宇, 李学宝, 崔翔, 等. 高压大功率IGBT器件封装用有机硅凝胶的制备工艺及耐电性[J]. 电工技术学报, 2021, 36(2): 352-361. Xu Jiayu, Li Xuebao, Cui Xiang, et al.Preparation process and breakdown properties of silicone gel used for the encapsulation of IGBT power modules[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 352-361. [4] 南江, 刘诚威, 夏平安. 聚四氟乙烯/纳米碳化硅改性复合材料的制备及其介电特性[J]. 电工技术学报, 2021, 36(1): 1-7. Nan Jiang, Liu Chengwei, Xia Pingan.Preparation and dielectric characteristics of nano-SiC/PTFE com-posites[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 1-7. [5] 迟庆国, 崔爽, 张天栋, 等. 碳化硅晶须/环氧树脂复合介质非线性电导特性研究[J]. 电工技术学报, 2020, 35(20): 4405-4414. Chi Qingguo, Cui Shuang, Zhang Tiandong, et al.Study on nonlinear characteristics on conductivity of silicon carbide whisker/epoxy resin composites[J]. Transactions of China Electrotechnical Society, 2020, 35(20): 4405-4414. [6] Smith B L, Schäffer T E, Viani M, et al.Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites[J]. Nature, 1999, 399(6738): 761-763. [7] Kruzhanov V, Arnhold V.Energy consumption in powder metallurgical manufacturing[J]. Powder Metallurgy, 2012, 55(1): 14-21. [8] Miloserdov F M, Mckay D, Muñoz B K, et al.Exceedingly facile Ph-X activation (X=Cl, Br, I) with ruthenium(II): arresting kinetics, autocatalysis, and mechanisms[J]. Angewandte Chemie International Edition, 2015, 54(29): 8466-8470. [9] Renard F, Bernard D, Thibault X, et al.Synchrotron 3D microtomography of halite aggregates during experimental pressure solution creep and evolution of the permeability[J]. Geophysical Research Letters, 2004, 31(7): 1-4. [10] 何金良, 杨霄, 胡军. 非线性均压材料的设计理论与参数调控[J]. 电工技术学报, 2017, 32(16): 44-60. He Jinliang, Yang Xiao, Hu Jun.Progress of theory and parameter adjustment for nonlinear resistive field grading materials[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 44-60. [11] 徐书婧, 李日红, 俞哲, 等. 氧等离子体反应器中氧化铝电介质特性[J]. 电工技术学报, 2017, 32(8): 74-81. Xu Shujing, Li Rihong, Yu Zhe, et al.Characteristics of alumina dielectric used for oxygen plasma reactor[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 74-81. [12] 宋金杰, 朱归胜, 尹荣, 等. 乙酸溶液辅助超低温制备高密度α-MoO3陶瓷[J]. 陶瓷学报, 2020, 41(2): 236-241. Song Jinjie, Zhu Guisheng, Yin Rong, et al. Acetic acid solution assisted preparation of high-density α-MoO3 ceramics at ultra-low temperatures[J]. Journal of Ceramics, 2020, 41(2): 236-241. [13] Mattia B, Lorenzo P, Theo S, et al.Investigation of electrochemical, optical and thermal effects during flash sintering of 8YSZ[J]. Materials, 2018, 11(7): 1214. [14] Anselmi-Tamburini U, Garay J E, Munir Z A.Fast low-temperature consolidation of bulk nanometric ceramic materials[J]. Scripta Materialia, 2006, 54(5): 823-828. [15] Qiao Xiuchen, Xie Xiaoying.The effect of electric field intensification at interparticle contacts in microwave sintering[J]. Scientific Reports, 2016, 6: 32163. [16] Zhao Zhe, Buscaglia V, Bowen P, et al.Spark plasma sintering of nano-crystalline ceramics[J]. Key Engineering Materials, 2004, 264: 2297-2300. [17] Shen Zhijian, Zhao Zhe, Peng Hong, et al.Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening[J]. Nature, 2002, 417(6686): 266-269. [18] Cologna M, RashkovA B, Raj R. Flash sintering of nanograin zirconia in < 5 s at 850 °C[J]. Journal of the American Ceramic Society, 2010, 93(11): 3556-3559. [19] Katz J D.Microwave sintering of ceramics[J]. Annual Review of Materials Research, 1992, 22: 153-170. [20] Takano Y, Takeya H, Fujii H, et al.Superconducting properties of MgB2 bulk materials prepared by high-pressure sintering[J]. Applied Physics Letters, 2001, 78(19): 2914-2916. [21] Chen I Wei, Wang X H.Sintering dense nanocrystalline ceramics without final-stage grain growth[J]. Nature, 2000, 404(6774): 168-171. [22] Polotay A V.Rate-controlled synthesis and sintering of nanocrystalline barium titanate powder[J]. Nanostructured Materials, 1998, 10(3): 349-355. [23] Polotai A, Breece K, Dickey E, et al.A novel approach to sintering nanocrystalline barium titanate ceramics[J]. Journal of the American Ceramic Society, 2005, 88(11): 3008-3012. [24] 谢志鹏, 许靖堃, 安迪. 先进陶瓷材料烧结新技术研究进展[J]. 中国材料进展, 2019, 38(9): 821-830, 886. Xie Zhipeng, Xu Jingkun, An Di.Research progress of novel sintering technology for advanced ceramic materials[J]. Materials China, 2019, 38(9): 821-830, 886. [25] Sōmiya S.Hydrothermal preparation and sintering of fine ceramic powders[J]. MRS Proceedings, 1983, 24: 46-62. [26] Yamasaki N, Yanagisawa K, Kanahara M N.A hydrothermal hot-pressing method: apparatus and application[J]. Journal of Materials Science Letters, 1986, 5(3): 355-356. [27] Kähäri H, Teirikangas M, Juuti J, et al.Dielectric properties of lithium molybdate ceramic fabricated at room temperature[J]. Journal of the American Ceramic Society, 2014, 97(11): 3378-3379. [28] Guo Jing, Guo Hanzheng, Baker A L, et al.Cold sintering: a paradigm shift for processing and integration of ceramics[J]. Angewandte Chemie International Edition, 2016, 128(38): 11629-11633. [29] Guo Hanzheng, Baker A L, Guo Jing, et al.Cold sintering process: a novel technique for low-temperature ceramic processing of ferroelectrics[J]. Journal of the American Ceramic Society, 2016, 99(11): 3489-3507. [30] Vakifahmetoglu C, Karacasulu L.Cold sintering of ceramics and glasses: a review[J]. Current Opinion in Solid State & Materials Science, 2020, 24(1): 100807. [31] Sohrabi Baba Heidary D, Lanagan M, Randall C A. Contrasting energy efficiency in various ceramic sintering processes[J]. Journal of the European Ceramic Society, 2018, 38(4): 1018-1029. [32] 郭小强, 魏玉鹏, 万燕鸣, 等. 新能源制氢电力电子变换器综述[J]. 电力系统自动化, 2021, 45(2): 185-199. Guo Xiaoqiang, Wei Yupeng, Wan Yanming, et al.Review on power electronic converters for producing hydrogen from renewable energy sources[J]. Automation of Electric Power Systems, 2021, 45(2): 185-199. [33] 李建林, 武亦文, 王楠, 等. 吉瓦级电化学储能电站研究综述及展望[J]. 电力系统自动化, 2021, 45(19): 2-14. Li Jianlin, Wu Yiwen, Wang Nan, et al.Review and prospect of gigawatt-level electrochemical energy storage power station[J]. Automation of Electric Power Systems, 2021, 45(19): 2-14. [34] Maria J P, Kang Xiaoyu, Floyd R D, et al.Cold sintering: crrent status and prospects[J]. Journal of Materials Research, 2017, 32(17): 3205-3218. [35] Guo Jing, Zhao Xuetong, De Beauvoir T H, et al. Recent progress in applications of the cold sintering process for ceramic-polymer composites[J]. Advanced Functional Materials, 2018, 28(39): 1-15. [36] Guo Jing, Baker A L, Guo Hanzheng, et al.Cold sintering process: a new era for ceramic packaging and microwave device development[J]. Journal of the American Ceramic Society, 2017, 100(2): 669-677. [37] 李超, 李谦, 顾永军, 等. 冷烧结陶瓷材料的制备及其微波介电性能[J]. 河南科技大学学报(自然科学版), 2018, 39(3): 7-12, 4. Li Chao, Li Qian, Gu Yongjun, et al.Preparation and microwave dielectric properties of cold sintering ceramics materials[J]. Journal of Henan University of Science and Technology( Natural Science), 2018, 39(3): 7-12, 4. [38] Guo Hanzheng, Guo Jing, Baker A L, et al.Hydrothermal-assisted cold sintering process: a new guidance for low-temperature ceramic sintering[J]. ACS Applied Materials & Interfaces, 2016, 49(8): 20909-20915. [39] Guo Hanzheng, Baker A L, Guo Jing, et al.Protocol for ultralow-temperature ceramic sintering: an integration of nanotechnology and the cold sintering process[J]. ACS Nano, 2016, 10(11): 10606-10614. [40] Wang Dixiong, Guo Hanzheng, Morandi C S, et al.Cold sintering and electrical characterization of lead zirconate titanate piezoelectric ceramics[J]. APL Materials, 2018, 6(1): 016101. [41] 郭茹, 马玉鹏, 张妍, 等. PZT陶瓷冷烧结工艺的优化与压电性能研究[J]. 中南大学学报(自然科学版), 2020, 51(11): 3119-3127. Guo Ru, Ma Yupeng, Zhang Yan, et al.Optimization of cold sintering process and piezoelectric properties of PZT ceramics[J]. Journal of Central South University (Science and Technology), 2020, 51(11): 3119-3127. [42] Gonzalez-Julian J, Neuhaus K, Bernemann M, et al.Unveiling the mechanisms of cold sintering of ZnO at 250 °C by varying applied stress and characterizing grain boundaries by kelvin probe force microscopy[J]. Acta Materials, 2018, 144: 116-128. [43] Guo Hanzheng, Guo Jing, Baker A L, et al.Cold sintering process for ZrO2-based ceramics: significantly enhanced densification evolution in yttria-doped ZrO2[J]. Journal of the American Ceramic Society, 2017, 100(2): 491-495. [44] Guo Hanzheng, Bayer T J M, Guo Jing, et al. Current progress and perspectives of applying cold sintering process to ZrO2-based ceramics[J]. Scripta Materialia, 2017, 136: 141-148. [45] Guo Hanzheng, Bayer T J M, Guo Jing, et al. Cold sintering process for 8 mol% Y2O3-stabilized ZrO2 ceramics[J]. Journal of the European Ceramic Society, 2017, 37(5): 2303-2308. [46] Berbano S S, Guo Jing, Guo Hanzheng, et al.Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte[J]. Journal of the American Ceramic Society, 2017, 100(5): 2123-2135. [47] Liu Yulong, Liu Jingru, Sun Qian, et al. Insight into the microstructure and ionic conductivity of cold sintered NASICON solid electrolyte for solid-state batteries[J]. ACS Applied Materials & Interfaces, 2019, 31(11): ?27890-27896. [48] Nakaya H, Iwasaki M, Randall C A.Thermal-assisted cold sintering study of a lithium electrolyte: Li13.9Sr0.1Zn(GeO4)4[J]. Journal of Electroceramics, 2020, 44(1): 16-22. [49] 张颖, 杨迪, 张军战, 等. 冷烧结工艺制备石榴石固态电解质及其性能[J]. 精细化工, 2020, 37(9): 1890-1895. Zhang Ying, Yang Di, Zhang Junzhan, et al.Preparation and properties of garnet solid-state electrolyte via cold sintering process[J]. Fine Chemicals, 2020, 37(9): 1890-1895. [50] Seo J H, Verlinde K, Guo Jing, et al.Cold sintering approach to fabrication of high rate performance binderless LiFePO4 cathode with high volumetric capacity[J]. Scripta Materialia, 2018, 146: 267-271. [51] Seo J H, Verlinde K, Rajagopalan R, et al.Cold sintering process for fabrication of a high volumetric capacity Li4Ti5O12 anode[J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2019, 250: 114435. [52] Guo Jing, Legum B, Anasori B, et al.Cold sintered ceramic nanocomposites of 2D MXene and zinc oxide[J]. Advanced Materials, 2018, 30(32): 1801846. [53] Chen Weiting, Gurdal A E, Tuncdemir S, et al.Considering the possibility of bonding utilizing cold sintering for ceramic adhesives[J]. Journal of the American Ceramic Society, 2017, 100(12): 5421-5432. [54] Bouville F, Studart A R.Geologically-inspired strong bulk ceramics made with water at room temperature[J]. Nature Communications, 2017, 8: 14655. [55] Hong Wenbin, Li Lei, Cao Meng, et al.Plastic deformation and effects of water in room-temperature cold sintering of NaCl microwave dielectric ceramics[J]. Journal of the American Ceramic Society, 2019, 101(9): 4038-4043. [56] Ivakin Y, Smirnov A, Kholodkova A, et al.Comparative study of cold sintering process and autoclave thermo-vapor treatment on a ZnO sample[J]. Crystals, 2021, 11(1): 71. [57] Floyd R D, Lowum S, Maria J P.Instrumentation for automated and quantitative low temperature compaction and sintering[J]. Review of Scientific Instruments, 2019, 90(5): 055104. [58] Funahashi S, Guo Jing, Guo Hanzheng, et al.Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics[J]. Journal of the American Ceramic Society, 2017, 100(2): 546-553. [59] Kang Xiaoyu, Floyd R D, Lowum S, et al. Mechanism studies of hydrothermal cold sintering of zinc oxide at near room temperature[J]. Journal of the American Ceramic Society, 2019, 102(8): ?4459-4469. [60] Kang Xiaoyu, Floyd R D, Lowum S, et al.Cold sintering with dimethyl sulfoxide solutions for metal oxides[J]. Journal of Materials Science, 2019, 54(10): 7438-7446. [61] Floyd R D.Improving the instrumentation and science of cold sintering[D]. Carolina: North Carolina State University, 2019. [62] Tsuji K, Ndayishimiye A, Lowum S, et al.Single step densification of high permittivity BaTiO3 ceramics at 300 ºC[J]. Journal of the European Ceramic Society, 2020, 40(4): 1280-1284. [63] Zaengle T H, Ndayishimiye A, Tsuji K, et al.Single‐step densification of nanocrystalline CeO2 by the cold sintering process[J]. Journal of the American Ceramic Society, 2020, 103(5): 2979-2985. [64] Bugaris D E, Zur Loye H C, Materials discovery by flux crystal growth: quaternary and higher order oxides[J]. Angewandte Chemie International Edition, 2012, 51(16): 3780-3811. [65] Leng Haoyang, Huang Jiajia, Nie Jiuyuan, et al.Cold sintering and ionic conductivities of Na3.256Mg0.128Zr1.872Si2PO12 solid electrolytes[J]. Journal of Power Sources, 2018, 391: 170-179. [66] Zhao Xuetong, Guo Jing, Wang Ke, et al.Introducing a ZnO-PTFE (polymer) nanocomposite varistor via the cold sintering process[J]. Advanced Engineering Materials, 2018, 20(7): 1700902. [67] De Beauvoir T H, Tsuji K, Zhao Xuetong, et al. Cold sintering of ZnO-PTFE: utilizing polymer phase to promote ceramic anisotropic grain growth[J]. Acta Materials, 2020, 196: 511-516. [68] Sada T, Tsuji K, Ndayishimiye A, et al.High permittivity BaTiO3 and BaTiO3-polymer nanocomposites enabled by cold sintering with a new transient chemistry: Ba(OH)2∙8H2O[J]. Journal of the European Ceramic Society, 2021, 41(1): 409-417. [69] Guo Jing, Guo Hanzheng, Heidary D S B, et al. Semiconducting properties of cold sintered V2O5 ceramics and co-sintered V2O5-PEDOT: PSS composites[J]. Journal of the European Ceramic Society, 2017, 37(4): 1529-1534. [70] Guo Jing, Berbano S S, Guo Hanzheng, et al.Cold sintering process of composites: bridging the processing temperature gap of ceramic and polymer materials[J]. Advanced Functional Materials, 2016, 26(39): 7115-7121. [71] Zhao Yingying, Berbano S S, Gao Lisheng, et al.Cold-sintered V2O5-PEDOT: PSS nanocomposites for negative temperature coefficient materials[J]. Journal of the European Ceramic Society, 2019, 39(4): 1257-1262. [72] Guo Jing, Floyd R, Lowum S, et al.Cold sintering: progress, challenges, and future opportunities[J]. Annual Review of Materials Research, 2019, 49: 275-295. [73] Ghidiu M, Lukatskaya M R, Zhao Mengqiang, et al.Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81. [74] Emre K, Armin V M, Jafar O, et al.Controlling the dimensions of 2D MXenes for ultrahigh-rate pseudocapacitive energy storage[J]. ACS Applied Materials & Interfaces, 2018, 10(31): 25949-25954. [75] Heidary D S B, Guo Jing, Seo J H, et al. Microstructures and electrical properties of V2O5 and carbon-nanofiber composites fabricated by cold sintering process[J]. Japanese Journal of Applied Physics, 2018, 57(2): 025702. [76] Zhao Xuetong, Liang Jie, Sun Jianjie, et al.Cold sintering ZnO based varistor ceramics with controlled grain growth to realize superior breakdown electric field[J]. Journal of the European Ceramic Society, 2021, 41(1): 430-435. [77] Ashraf M A, Bhuiyan A H, Hakim M A, et al. Microstructure and electrical properties of Ho2O3 doped Bi2O3-based ZnO varistor ceramics[J]. Physica B-Condensed Matter, 2010, 405(17): ?3770-3774. [78] Xu Dong, Cheng Xiaonong, Yuan Hongming, et al.Microstructure and electrical properties of Y(NO3)3·6H2O-doped ZnO-Bi2O3-based varistor ceramics[J]. Journal of Alloys and Compounds, 2011, 509(38): 9312-9317. [79] Bouchekhlal A, Hobar F.Effect of sintering temperature on microstructure and nonlinear electrical characteristics of ZnO varistor[J]. Journal of Advanced Dielectrics, 2018, 8(2): 1850014. [80] Subasri R, Asha M, Hembram K, et al.Microwave sintering of doped nanocrystalline ZnO and characterization for varistor applications[J]. Materials Chemistry and Physics, 2009, 115(2): 677-684. [81] Anas S, Metz R, Sanoj M A, et al.Sintering of surfactant modified ZnO-Bi2O3 based varistor nanopowders[J]. Ceramics International, 2010, 36(8): 2351-2358. [82] Gunnewiek R F K, Kiminami R H G A. Two-step microwave sintering of nanostructured ZnO-based varistors[J]. Ceramics International, 2017, 43(1): ?847-853. [83] Kharchouche K, Belkhiat S.Effect of spark plasma sintering on microstructure and electrical properties of ZnO-based varistors[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(19): 16238-16247. [84] Suleiman B, Yu Qinghua, Ding Yulong, et al.Fabrication of form stable NaCl-Al2O3 composite for thermal energy storage by cold sintering process[J]. Frontiers of Chemical Science and Engineering, 2019, 13(4): 727-735. [85] Liu Ming, Jin Quan, Shen Ping.Cold sintering of NaNO3/MgO heat-storage composite[J]. Ceramics International, 2020, 46(18): 28955-28960. [86] 付长利,李晓萌,郭靖. 基于冷烧结技术的电介质材料研究进展[J]. 陕西师范大学学报(自然科学版), 2021, 49(4): 30-42. Fu Changli, Li Xiaomeng, Guo Jing.Research progress of dielectric materials prepared via cold sintering process[J]. Journal of Shaanxi Normal University (Natural Science Edition) 2021, 49(4): 30-42. [87] De Beauvoir T H, Dursun S, Gao Lisheng, et al. New opportunities in metallization integration in cofired electroceramic multilayers by the cold sintering process[J]. ACS Applied Electronic Materials, 2019, 1(7): 1198-1207. [88] Wang Dixiong, Dursun S, Gao Lisheng, et al.Fabrication of bimorph lead zirconate titanate thick films on metal substrates via the cold sintering-assisted process[J]. Acta Materialia, 2020, 195: 482-490. [89] Sharipova A, Slesarenko V, Gutmanas E.Synthesis of metal-metal oxide (Me-MenOm) nanocomposites by partial reduction and cold sintering[J]. Materials Letters, 2020, 276: 128197. [90] Wang Dawei, Zhou Di, Song Kaixin, et al.Cold-sintered C0G multilayer ceramic capacitors[J]. Advanced Electronic Materials, 2019, 1900025: 1-5. [91] Ma Jiaping, Chen Xiaoming, Ouyang Wangqin, et al.Microstructure, dielectric, and energy storage properties of BaTiO3 ceramics prepared via cold sintering[J]. Ceramics International, 2018, 44: 4436-4441. [92] Nie Jiuyuan, Zhang Yuanyao, Chan J M, et al.Water-assisted flash sintering: flashing ZnO at room temperature to achieve ~98% density in seconds[J]. Scripta Materialia, 2018, 142: 79-82.