[1] Ma Songqi, Webster D C, Jabeen F.Hard and flexible, degradable thermosets from renewable bioresources with the assistance of water and ethanol[J]. Macromolecules, 2016, 49(10): 3780-3788.
[2] 蒋起航, 王威望, 钟禹, 等. 环氧树脂高频松弛的交流电导与双极性方波击穿特性[J]. 电工技术学报, 2024, 39(4): 1159-1171.
Jiang Qihang, Wang Weiwang, Zhong Yu, et al.AC conductivity with high frequency relaxation and breakdown characteristics of epoxy resin under bipolar square wave voltage[J]. Transactions of China Electrotechnical Society, 2024, 39(4): 1159-1171.
[3] Xing Mingfei, Li Zixin, Zheng Guohang, et al.Recycling of carbon fiber-reinforced epoxy resin composite via a novel acetic acid swelling technology[J]. Composites Part B: Engineering, 2021, 224: 109230.
[4] 李进, 薛润东, 赵仁勇, 等. 基于声弹效应的芳纶增强环氧复合材料残余应力检测技术研究[J]. 电工技术学报, 2023, 38(9): 2519-2527.
Li Jin, Xue Rundong, Zhao Renyong, et al.Residual stress detection technology for aramid reinforced epoxy composites based on acoustic-elastic effect[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2519-2527.
[5] 谢子豪, 李敏, 宋岩泽, 等. 温度对环氧树脂气—固界面电荷积聚的影响研究[J]. 高压电器, 2023, 59(9): 60-66, 89.
Xie Zihao, Li Min, Song Yanze, et al.Study on effect of temperature on charge accumulation at gas-solid interface of epoxy resin[J]. High Voltage Apparatus, 2023, 59(9): 60-66, 89.
[6] Liu Jingkai, Wang Shuaipeng, Peng Yunyan, et al.Advances in sustainable thermosetting resins: From renewable feedstock to high performance and recyclability[J]. Progress in Polymer Science, 2021, 113: 101353.
[7] Chauhan S, Bhushan R K.Improvement in mechanical performance due to hybridization of carbon fiber/epoxy composite with carbon black[J]. Advanced Composites and Hybrid Materials, 2018, 1(3): 602-611.
[8] Zhong Xiao, Yang Xutong, Ruan Kunpeng, et al.Discotic liquid crystal epoxy resins integrating intrinsic high thermal conductivity and intrinsic flame retardancy[J]. Macromolecular Rapid Communica-tions, 2022, 43(1): e2100580.
[9] Fernando S, Adhikari S, Chandrapal C, et al.Biorefineries: ?current status, challenges, and future direction[J]. Energy & Fuels, 2006, 20(4): 1727-1737.
[10] Liu Xiaoqing, Xin Wenbo, Zhang Jinwen.Rosin-based acid anhydrides as alternatives to petrochemical curing agents[J]. Green Chemistry, 2009, 11(7): 1018-1025.
[11] Nikafshar S, Zabihi O, Hamidi S, et al.A renewable bio-based epoxy resin with improved mechanical performance that can compete with DGEBA[J]. RSC Advances, 2017, 7(14): 8694-8701.
[12] Dinu R, Lafont U, Damiano O, et al.High glass transition materials from sustainable epoxy resins with potential applications in the aerospace and space sectors[J]. ACS Applied Polymer Materials, 2022, 4(5): 3636-3646.
[13] 刘贺晨, 郭展鹏, 刘云鹏, 等. 衣康酸基环氧树脂与双酚A环氧树脂的电树枝特性对比[J]. 高电压技术, 2022, 48(7): 2607-2615.
Liu Hechen, Guo Zhanpeng, Liu Yunpeng, et al.Comparison of electrical tree characteristics between itaconic acid based epoxy resin and bisphenol A epoxy resin[J]. High Voltage Engineering, 2022, 48(7): 2607-2615.
[14] Di Mauro C, Genua A, Mija A.Fully bio-based reprocessable thermosetting resins based on epoxidized vegetable oils cured with itaconic acid[J]. Industrial Crops and Products, 2022, 185: 115116.
[15] Xu Yunsheng, Hua Geng, Hakkarainen M, et al.Isosorbide as core component for tailoring biobased unsaturated polyester thermosets for a wide structure-property window[J]. Biomacromolecules, 2018, 19(7): 3077-3085.
[16] Li Chao, Liu Xiaoqing, Zhu Jin, et al.Synthesis, characterization of a rosin-based epoxy monomer and its comparison with a petroleum-based counterpart[J]. Journal of Macromolecular Science, Part A, 2013, 50(3): 321-329.
[17] Niu Haoxin, Wu Guanlong, Wang Xin, et al.Synthesis of a vanillin-derived bisDOPO co-curing agent rendering epoxy thermosets simultaneously improved flame retardancy, mechanical strength and transparency[J]. Polymer Degradation and Stability, 2023, 211: 110333.
[18] Ma Songqi, Liu Xiaoqing, Jiang Yanhua, et al.Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers[J]. Green Chem, 2013, 15(1): 245-254.
[19] Montarnal D, Capelot M, Tournilhac F, et al.Silica-like malleable materials from permanent organic networks[J]. Science, 2011, 334(6058): 965-968.
[20] Li Wenbin, Xiao Laihui, Wang Yigang, et al.Thermal-induced self-healing bio-based vitrimers: Shape memory, recyclability, degradation, and intrinsic flame retardancy[J]. Polymer Degradation and Stability, 2022, 202: 110039.
[21] 刘贺晨, 孙章林, 刘云鹏, 等. 基于酯交换的可回收类玻璃化环氧树脂制备与性能研究[J]. 电工技术学报, 2023, 38(15): 4019-4029.
Liu Hechen, Sun Zhanglin, Liu Yunpeng, et al.Preparation and properties of recyclable vitrified epoxy resin based on transesterification[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 4019-4029.
[22] 刘贺晨, 孙章林, 魏利伟, 等. 双重动态交联Vitrimer树脂中电树枝劣化及局部放电与降解回收特性[J/OL]. 中国电机工程学报, 2023: 1-11[2023-12-27]. https://doi.org/10.13334/j.0258-8013.pcsee.231208.
Liu Hechen, Sun Zhanglin, Wei Liwei, et al. Characterization of electrical dendrite degradation and partial discharge and degradation recovery in dual dynamic crosslinked Vitrimer resin[J/OL]. Proceedings of the CSEE, 2023: 1-11[2023-12-27]. https://doi.org/10.13334/j.0258-8013.pcsee.231208.
[23] 伍云健, 丁大霖, 林慧, 等. 基于动态双硫键的本征自修复环氧绝缘材料性能研究[J]. 电工技术学报, 2024, 39(3): 836-843.
Wu Yunjian, Ding Dalin, Lin Hui, et al.Properties of intrinsic self-healing epoxy insulating materials based on dynamic disulfide bond[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 836-843.
[24] Guo Zijian, Liu Bangjie, Zhou Li, et al.Preparation of environmentally friendly bio-based vitrimers from vanillin derivatives by introducing two types of dynamic covalent CN and S-S bonds[J]. Polymer, 2020, 197: 122483.
[25] Rashid M A, Zhu Siyao, Zhang Liying, et al.High-performance and fully recyclable epoxy resins cured by imine-containing hardeners derived from vanillin and syringaldehyde[J]. European Polymer Journal, 2023, 187: 111878.
[26] Matsukizono H, Endo T.Reworkable polyhydroxyur-ethane films with reversible acetal networks obtained from multifunctional six-membered cyclic carbonates[J]. Journal of the American Chemical Society, 2018, 140(3): 884-887.
[27] Li Qiong, Ma Songqi, Wang Sheng, et al.Facile catalyst-free synthesis, exchanging, and hydrolysis of an acetal motif for dynamic covalent networks[J]. Journal of Materials Chemistry A, 2019, 7(30): 18039-18049.
[28] Jung S, Kim Y S, Jang H G, et al.Thermally responsive imidazole-based diels-alder microbeads as a latent curing agent for epoxy resins[J]. ACS Applied Polymer Materials, 2022, 4(8): 6111-6119.
[29] Zhang Xiaoting, Wang Shujuan, Jiang Zikang, et al.Boronic ester based Vitrimers with enhanced stability via internal boron-nitrogen coordination[J]. Journal of the American Chemical Society, 2020, 142(52): 21852-21860.
[30] Lyu Zhenyu, Wu Tongfei.Extremely stretchable vitrimers[J]. Macromolecular Rapid Communications, 2020, 41(16): e2000265.
[31] Li Pengyun, Ma Songqi, Wang Binbo, et al.Degradable benzyl cyclic acetal epoxy monomers with low viscosity: synthesis, structure-property relation-ships, application in recyclable carbon fiber composite[J]. Composites Science and Technology, 2022, 219: 109243.
[32] Baumgarten K, Tighe B P.Viscous forces and bulk viscoelasticity near jamming[J]. Soft Matter, 2017, 13(45): 8368-8378.
[33] 刘贺晨, 魏利伟, 孙章林, 等. 催化剂对基于动态酯交换Vitrimers材料性能的影响[J]. 电工技术学报, 2024, 39(16): 5134-5148.
Liu Hechen, Wei Liwei, Sun Zhanglin, et al.Influence of catalysts on the properties of dynamic ester exchange Vitrimers based materials[J]. Transactions of China Electrotechnical Society, 2024, 39(16): 5134-5148.
[34] Liu Tuan, Hao Cheng, Zhang Shuai, et al.A self-healable high glass transition temperature bioepoxy material based on vitrimer chemistry[J]. Macromolecules, 2018, 51(15): 5577-5585.
[35] Di Mauro C, Mija A.Influence of the presence of disulphide bonds in aromatic or aliphatic dicarboxylic acid hardeners used to produce reprocessable epoxidized thermosets[J]. Polymers, 2021, 13(4): 534.
[36] Di Mauro C, Genua A, Mija A.Building thermally and chemically reversible covalent bonds in vegetable oil based epoxy thermosets. Influence of epoxy-hardener ratio in promoting recyclability[J]. Materials Advances, 2020, 1(6): 1788-1798.
[37] Sun Wenjie, Zhang Lei, Xu Jiazhu, et al.Study on vanillin triggered degradable epoxy via facile one-pot synthesis[J]. Materials Letters, 2022, 323: 132589.
[38] Geng Hongwei, Wang Yuli, Yu Qingqing, et al.Vanillin-based polyschiff vitrimers: reprocessability and chemical recyclability[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15463-15470.
[39] Liu Xiaohong, Liang Liyan, Lu Maoping, et al.Water-resistant bio-based vitrimers based on dynamic imine bonds: self-healability, remodelability and ecofriendly recyclability[J]. Polymer, 2020, 210: 123030.
[40] Ma Jinpeng, Li Guanxi, Hua Xueni, et al.Biodegradable epoxy resin from vanillin with excellent flame-retardant and outstanding mechanical properties[J]. Polymer Degradation and Stability, 2022, 201: 109989.
[41] Chen Picheng, Ding Yu, Wang Yanqing, et al.Functional bio-based vitrimer with excellent healing and recyclability based on conjugated deflection self-toughening[J]. Chemical Engineering Journal, 2023, 474: 145680.
[42] Nabipour H, Niu Haoxin, Wang Xin, et al.Fully bio-based epoxy resin derived from vanillin with flame retardancy and degradability[J]. Reactive and Functional Polymers, 2021, 168: 105034.
[43] Xu Xiwei, Ma Songqi, Wu Jiahui, et al.High-performance, command-degradable, antibacterial Schiff base epoxy thermosets: synthesis and properties[J]. Journal of Materials Chemistry A, 2019, 7(25): 15420-15431.
[44] Málek J.Kinetic analysis of crystallization processes in amorphous materials[J]. Thermochimica Acta, 2000, 355(1/2): 239-253.
[45] Taynton P, Ni Huagang, Zhu Chengpu, et al.Repairable woven carbon fiber composites with full recyclability enabled by malleable polyimine networks[J]. Advanced Materials, 2016, 28(15): 2904-2909.
[46] Xu Xiwei, Ma Songqi, Wang Sheng, et al.Dihydrazone-based dynamic covalent epoxy networks with high creep resistance, controlled degradability, and intrinsic antibacterial properties from bioresources[J]. Journal of Materials Chemistry A, 2020, 8(22): 11261-11274.
[47] 史中行. 交联结构对聚氨酯弹性体性能的影响[D]. 青岛: 青岛科技大学, 2022.
Shi Zhongxing.Effect of cross-linking structure on properties of polyurethane elastomer[D]. Qingdao: Qingdao University of Science and Technology, 2022.
[48] Liu Jingkai, Dai Jinyue, Wang Shuaipeng, et al.Facile synthesis of bio-based reactive flame retardant from vanillin and guaiacol for epoxy resin[J]. Composites Part B: Engineering, 2020, 190: 107926.
[49] Wang Sheng, Ma Songqi, Li Qiong, et al.Facile in-situ preparation of high-performance epoxy vitrimers from renewable resources and its application in nondestructively recyclable carbon fiber composites[J]. Green Chemistry, 2019, 21(6): 1484-1497.
[50] Fang Zhen, Nikafshar S, Hegg E L, et al.Biobased divanillin as a precursor for formulating biobased epoxy resin[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 9095-9103.
[51] Desnoes E, Toubal L, Bouazza A H, et al.Biosourced vanillin Schiff base platform monomers as substitutes for DGEBA in thermoset epoxy[J]. Polymer Engineering & Science, 2020, 60(10): 2593-2605.
[52] Yang Aihua, Deng Cong, Chen Hong, et al.A novel Schiff-base polyphosphate ester: Highly-efficient flame retardant for polyurethane elastomer[J]. Polymer Degradation and Stability, 2017, 144: 70-82.
[53] Gnanasekar P, Chen Heyu, Tratnik N, et al.Enhancing performance of phosphorus containing vanillin-based epoxy resins by P-N non-covalently functionalized graphene oxide nanofillers[J]. Composites Part B: Engineering, 2021, 207: 108585.
[54] Krause B, Koops G H, van der Vegt N F A, et al. Ultralow-k dielectrics made by supercritical foaming of thin polymer films[J]. Advanced Materials, 2002, 14(15): 1041.
[55] 孙煜. 低介电常数聚酰亚胺薄膜材料的制备及性能研究[D]. 郑州: 郑州轻工业大学, 2022.
Sun Yu.Preparation and properties of polyimide film with low dielectric constant[D]. Zhengzhou: Zhengzhou University of Light Industry, 2022.
[56] Utpalla P, Sharma S K, Deshpande S K, et al.Role of free volumes and segmental dynamics on ion conductivity of PEO/LiTFSI solid polymer electrolytes filled with SiO2 nanoparticles: a positron annihilation and broadband dielectric spectroscopy study[J]. Physical Chemistry Chemical Physics, 2021, 23(14): 8585-8597.
[57] Bakar R, Darvishi S, Aydemir U, et al.Decoding polymer architecture effect on ion clustering, chain dynamics, and ionic conductivity in polymer electrolytes[J]. ACS Applied Energy Materials, 2023, 6(7): 4053-4064.
[58] Liu Xiaohong, Zhang Ending, Feng Zhiqiang, et al.Degradable bio-based epoxy vitrimers based on imine chemistry and their application in recyclable carbon fiber composites[J]. Journal of Materials Science, 2021, 56(28): 15733-15751.
[59] Ma Songqi, Webster D C.Degradable thermosets based on labile bonds or linkages: a review[J]. Progress in Polymer Science, 2018, 76: 65-110.
[60] Tran T N, Di Mauro C, Malburet S, et al.Dual cross-linking of epoxidized linseed oil with combined aliphatic/aromatic diacids containing dynamic S-S bonds generating recyclable thermosets[J]. ACS Applied Bio Materials, 2020, 3(11): 7550-7561.
[61] Di Mauro C, Genua A, Mija A.Kinetical study, thermo-mechanical characteristics and recyclability of epoxidized camelina oil cured with antagonist structure (aliphatic/aromatic) or functionality (acid/amine) hardeners[J]. Polymers, 2021, 13(15): 2503.
[62] Memon H, Liu Haiyang, Rashid M A, et al.Vanillin-based epoxy vitrimer with high performance and closed-loop recyclability[J]. Macromolecules, 2020, 53(2): 621-630.
[63] Wang Sheng, Ma Songqi, Li Qiong, et al.Robust, fire-safe, monomer-recovery, highly malleable thermosets from renewable bioresources[J]. Macromolecules, 2018, 51(20): 8001-8012. |