Magnetic Balance Protection of Transformers Based on Optical Fiber Leakage Magnetic Field Measurement
Deng Xiangli1, Zhu Hongye1, Yan Kang1, Zhang Zhan1, Liu Shiming2
1. School of Electric Power Engineering Shanghai University of Electric Power Shanghai 200090 China; 2. School of Electric Power Engineering Shandong University Jinan 250061 China
Abstract:Traditional differential protection has difficulty responding effectively to early faults such as transformer winding deformation and minor inter-turn faults.Early winding faults can be sensitively detected according to the changes of transformer winding leakage field, but analytical methods and online measurement solutions suitable forwinding leakage field analysis of engineering applications are scarce. To address the above problems, this paper proposes a model for calculating the leakage field distribution of transformer windings under the simplified model, and puts forward a corresponding early fault protection scheme based on the magnetic balance principle of transformer leakage field. Firstly, the faulty winding with uneven current density distribution is divided into unfaulty turn winding and short-circuited turn winding by superposition theorem, and the Fourier series decomposition method is applied to the winding current density by using the mirror image current method and ignoring the effect of the core.For each frequency component, the leakage induction intensity is solved by the separation of variables method.The results of each frequency component are superimposed to obtain the spatial distribution function of the leakage induction intensity.Secondly, since the transformer winding, core and yoke are symmetrical in structure, the leakage field is symmetrically distributed in space. Magneto-optical sensors are set at the upper and lower end points and the middle of the winding, then the principle of magnetic balance protection based on transformer leakage field is proposed.When the transformer is in normal operation, the sum of radial magnetic induction intensity at the upper and lower end points of the winding is 0, and the radial magnetic induction intensity at the middle point is close to 0. If a fault occurs inside the transformer, the symmetry of the leakage magnetic field distribution changes, and a large amount of fault unevenness will appear at the upper and lower measurement points and the middle point, according to which early winding faultscan bedetected.Finally, the correctness of the magnetic balance protection scheme is verified by establishing the core simulation model of Ansys and the dynamic mode combined transformer model, and the advantages of magnetic balance protection under early faults are demonstrated by comparing the traditional differential protection with the method in this paper. The following conclusions are drawn from the simulations and dynamic mode experiments: (1) Based on three measurement points per winding, the transformer winding magnetic balance protection logic method can respond to the transformer winding early faults sensitively. (2) Magnetic balance protection is able to detect winding deformations above 5% and inter-turn short circuits below 1%. (3) The protection scheme is not affected by changes in load and inrush current.
邓祥力, 朱宏业, 严康, 张展, 刘世明. 基于光纤漏磁场测量的变压器磁平衡保护研究[J]. 电工技术学报, 2024, 39(3): 628-642.
Deng Xiangli, Zhu Hongye, Yan Kang, Zhang Zhan, Liu Shiming. Magnetic Balance Protection of Transformers Based on Optical Fiber Leakage Magnetic Field Measurement. Transactions of China Electrotechnical Society, 2024, 39(3): 628-642.
[1] 钱国超, 王丰华, 王劭菁, 等. 大型变压器绕组振动频响特性的试验研究[J]. 高电压技术, 2018, 44(3): 821-826. Qian Guochao, Wang Fenghua, Wang Shaojing, et al.Experimental research of vibration frequency response features of transformer winding[J]. High Voltage Engineering, 2018, 44(3): 821-826. [2] 邓祥力, 谢海远, 熊小伏, 等. 基于支持向量机和有限元分析的变压器绕组变形分类方法[J]. 中国电机工程学报, 2015, 35(22): 5778-5786. Deng Xiangli, XieHaiyuan, XiongXiaofu, et al. Classification method of transformer winding deformation based on SVM and finite element analysis[J]. Proceedings of the CSEE, 2015, 35(22): 5778-5786. [3] 唐治平, 彭敏放, 李光明, 等. 基于重复脉冲法的变压器绕组匝间短路故障诊断[J]. 电力自动化设备, 2018, 38(10): 153-158. Tang Zhiping, Peng Minfang, Li Guangming, et al.Diagnosis of inter-turn short circuit fault of transformer winding based on repetitive surge oscillograph[J]. Electric Power Automation Equipment, 2018, 38(10): 153-158. [4] 金文龙, 陈建华, 李光范, 等. 全国110 kV及以上等级电力变压器短路损坏事故统计分析[J]. 电网技术, 1999, 23(6): 70-74, 77. JinWenlong, Chen Jianhua, Li Guangfan, et al. Statistics and analysis on power tranformer damages caused by short circuit fault in 110 kV and higher voltage classes[J]. Power System Technology, 1999, 23(6): 70-74, 77. [5] 张鹏, 齐波, 李成榕, 等. 电力变压器油中溶解气体特性影响因素的量化分析[J]. 中国电机工程学报, 2021, 41(10): 3620-3631, 3686. Zhang Peng, Qi Bo, Li Chengrong, et al.Quantitative analysis of influence factors of dissolved gas characteristics in power transformer oil[J]. Proceedings of the CSEE, 2021, 41(10): 3620-3631, 3686. [6] 郑书生, 陈金祥, 李成榕, 等. 变压器绕组对局部放电特高频定位方法的影响[J]. 高电压技术, 2013, 39(2): 324-329. Zheng Shusheng, Chen Jinxiang, Li Chengrong, et al.Influence of windings on locating partial discharge in transformers by using ultra-high frequency method[J]. High Voltage Engineering, 2013, 39(2): 324-329. [7] 索南加乐, 焦在滨, 康小宁, 等. Y/Δ接线变压器漏感参数的识别方法[J]. 中国电机工程学报, 2008, 28(13): 84-90. SuoNanjiale, Jiao Zaibin, Kang Xiaoning, et al. Algorithm to identify leakage inductances of power transformer with Y-delta connection[J]. Proceedings of the CSEE, 2008, 28(13): 84-90. [8] Haghjoo F, Mostafaei M, Mohammadi H.A new leakage flux-based technique for turn-to-turn fault protection and faulty region identification in transformers[J]. IEEE Transactions on Power Delivery, 2018, 33(2): 671-679. [9] Cabanas M F, Melero M G, Pedrayes F, et al.A new online method based on leakage flux analysis for the early detection and location of insulating failures in power transformers: application to remote condition monitoring[J]. IEEE Transactions on Power Delivery, 2007, 22(3): 1591-1602. [10] Athikessavan S C, Jeyasankar E, Manohar S S, et al.Inter-turn fault detection of dry-type transformers using core-leakage fluxes[J]. IEEE Transactions on Power Delivery, 2019, 34(4): 1230-1241. [11] 潘超, 石文鑫, 孟涛. 单相变压器匝间短路电磁特性研究[J]. 高电压技术, 2020, 46(5): 1839-1856. Pan Chao, Shi Wenxin, Meng Tao.Study on electromagnetic characteristics of interturn short circuit of single-phase transformer[J]. High Voltage Engineering, 2020, 46(5): 1839-1856. [12] 刘云鹏, 李欢, 田源, 等. 基于分布式光纤传感的绕组变形程度检测[J]. 电工技术学报, 2021, 36(7): 1347-1355. Liu Yunpeng, Li Huan, Tian Yuan, et al.Winding deformation detection based on distributed optical fiber sensing[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1347-1355. [13] 刘云鹏, 李昕烨, 李欢, 等. 内置分布式光纤传感的35 kV油浸式变压器研制[J]. 高电压技术, 2020, 46(6): 1886-1894. Liu Yunpeng, Li Xinye, Li Huan, et al.Development of 35 kV oil-immersed transformer with built-in distributed optical fiber[J]. High Voltage Engineering, 2020, 46(6): 1886-1894. [14] 刘云鹏, 王博闻, 李欢,等. 结合载纤绕组形变测量法的大型变压器绕组多次短路冲击暂态声纹特征[J]. 中国电机工程学报, 2022, 42(1): 434-447. Liu Yunpeng, Wang Bowen, Li Huan, et al.Transient acoustics characteristics of large transformer windings under multiple short-circuit impulse combined with fiber-carrying winding deformation measurement[J]. Proceedings of the CSEE, 2022, 42(1): 434-447. [15] 郑涛, 树玉增, 董淑惠, 等. 基于漏感变化的变压器式可控高抗匝间保护新原理[J]. 电力系统自动化, 2011, 35(12): 65-69. Zheng Tao, Shu Yuzeng, Dong Shuhui, et al.Interturn fault protection for transformer type controllable shunt reactor based on leakage inductance change[J]. Automation of Electric Power Systems, 2011, 35(12): 65-69. [16] 邓祥力, 朱慧, 杨梅, 等. 基于多状态模型的变压器绕组早期故障保护方法研究[J]. 中国电机工程学报, 2022, 42(18): 6704-6715. Deng Xiangli, Zhu Hui, Yang Mei, et al.Research on early fault protection method of transformer winding based on multi-state model[J]. Proceedings of the CSEE, 2022, 42(18): 6704-6715. [17] 刘校销, 郑涛, 黄婷. 基于等效漏电感参数辨识的磁控式并联电抗器匝间故障保护方案[J]. 电工技术学报, 2020, 35(1): 134-145. Liu Xiaoxiao, Zheng Tao, Huang Ting.Protection scheme based on the identification of equivalent leakage inductance against turn-to-turn fault of magnetically controlled shunt reactor[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 134-145. [18] 邓祥力, 王传启, 张哲. 基于回路平衡方程和励磁电感的特高压变压器保护[J]. 中国电机工程学报, 2012, 32(1): 6, 147-153. Deng Xiangli, Wang Chuanqi, Zhang Zhe. UHV transformer protection based on equivalent circuit equation and excitation inductance[J]. Proceedings of the CSEE, 2012, 32(1): 6, 147-153. [19] 李振华, 蒋伟辉, 喻彩云, 等. 基于短路阻抗及ΔU-I1轨迹特征联合分析的变压器绕组变形故障在线检测方法[J]. 电力自动化设备, 2021, 41(7): 203-209, 217. Li Zhenhua, Jiang Weihui, Yu Caiyun, et al.Online detection method of transformer winding deformation based on combined analysis of short circuit impedance and ΔU-I1 locus characteristics[J]. Electric Power Automation Equipment, 2021, 41(7): 203-209, 217. [20] 李永建, 闫鑫笑, 张长庚, 等. 基于磁-热-流耦合模型的变压器损耗计算和热点预测[J]. 电工技术学报, 2020, 35(21): 4483-4491. Li Yongjian, Yan Xinxiao, Zhang Changgeng, et al.Numerical prediction of losses and local overheating in transformer windings based on magnetic-thermal-fluid model[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4483-4491. [21] 郑玉平, 龚心怡, 潘书燕, 等. 变压器匝间短路故障工况下的漏磁特性分析[J]. 电力系统自动化, 2022, 46(15): 121-127. Zheng Yuping, Gong Xinyi, Pan Shuyan, et al.Analysis on leakage flux characteristics of turn-to-turn short-circuit fault for power transformer[J]. Automation of Electric Power Systems, 2022, 46(15): 121-127. [22] 孙佳安, 李琳. 考虑次同步分量下时间周期问题的三维定点有限元法及变压器电磁特性分析[J]. 电工技术学报, 2022, 37(14): 3475-3486. Sun Jia'an, Li Lin. 3D fixed-point finite element method for time periodic problems with subsyn-chronous components and analysis of transformer electromagnetic characteristics[J]. Transactions of China Electrotechnical Society, 2022, 37(14): 3475-3486. [23] Liu Shiming, Zhang Luliang, Fu Chuanshun, et al.A new two-port network model-based pilot protection for AC transmission lines[J]. IEEE Transactions on Power Delivery, 2020, 35(2): 473-482. [24] Liu Shiming, Wang Bo, Zhao Yongsen, et al.Novel differential protection approach of UHV AC transmission lines based on tellegen’s quasi-power theorem[J]. IEEE Transactions on Power Delivery, 2022, 37(2): 1264-1274. [25] 汤蕴璆, 梁艳萍. 电机电磁场的分析与计算[M]. 北京: 机械工业出版社, 2010.