Parameter Identification Method of Thermal Model of Lithium-Ion Battery Based on Self-Generated Heat and External Heat Transfer
Sun Bingxiang1, Song Donglin1, Ruan Haijun2, Zhang Weige1, Zheng Kaiyuan1
1. National Active Distribution Network Technology Research Center Beijing Jiaotong University Beijing 100044 China; 2. Dyson School of Design Engineering Imperial College London London SW7 2AZ UK
Abstract:Accurate identification of thermal model parameters (heat capacity and thermal resistance) of lithium ion batteries is crucial for thermoelectric coupling modeling and state parameter estimation of batteries. There is a certain conversion formula between the thermal model parameters and the thermophysical parameters (specific heat capacity and thermal conductivity) of lithium ion batteries, so the two sets of parameters have an equivalent relationship. The study of thermal model parameters can refer to the research methods of thermophysical parameters. Accurate measurement of battery specific heat capacity and thermal conductivity requires the use of expensive testing equipment, which is costly and takes longer to test. Using optimization algorithms to identify thermal model parameters not only has low cost, but also has short calculation cycle. In this paper, a fast method for identifying the thermal model parameters of NCM laminated soft packaged lithium-ion batteries is proposed based on the charging and discharging conditions combined with the battery heat generation and heat transfer mechanisms. By establishing a distributed thermal equivalent circuit model to simulate the temperature distribution along the thickness direction of the battery, the reversible heat can be ignored and the calculation of battery heat generation can be simplified by designing a bidirectional pulse operating condition; The temperature was discretized and the thermal model parameters of 0℃, 10℃, and 20℃ were identified using (adaptive particle swarm optimization (APSO) algorithm. The identified parameters are equivalently treated as specific heat capacity and thermal conductivity, with an average specific heat capacity of 0.996 J/(g·K) and an average thermal conductivity of 0.376 W/(m·K). Comparing the specific heat capacity and thermal conductivity of batteries from different literature, they are within a reasonable range, and the difference is not more than 8%. Temperature sensitivity analysis was conducted. When the thermal model parameters changed by ±5%, the temperature error of the model simulation results was less than 0.08℃. Therefore, in the range of 0 to 20℃, the thermal model parameters are not sensitive to temperature. Finally, the identified parameters are brought into the model and simulated using a different strategy than the parameter identification experiment. The measured and simulated battery surface temperatures agree well with a temperature error of less than 0.1℃, which proves that the proposed thermal model parameter identification method has a high accuracy. Moreover, the proposed method has the advantage of simplicity and simplicity, requiring only two batteries of the same specification, without the need for other devices, and having a short test cycle. It can provide technical support for the identification of thermal model parameters for stacked soft packaged lithium ion batteries.
孙丙香, 宋东林, 阮海军, 张维戈, 郑凯元. 基于自产热和外传热的锂离子电池热学模型参数辨识方法[J]. 电工技术学报, 2024, 39(1): 278-288.
Sun Bingxiang, Song Donglin, Ruan Haijun, Zhang Weige, Zheng Kaiyuan. Parameter Identification Method of Thermal Model of Lithium-Ion Battery Based on Self-Generated Heat and External Heat Transfer. Transactions of China Electrotechnical Society, 2024, 39(1): 278-288.
[1] 孙丙香, 任鹏博, 陈育哲, 等. 锂离子电池在不同区间下的衰退影响因素分析及任意区间的老化趋势预测[J]. 电工技术学报, 2021, 36(3): 666-674. Sun Bingxiang, Ren Pengbo, Chen Yuzhe, et al.Analysis of influencing factors of degradation under different interval stress and prediction of aging trend in any interval for lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 666-674. [2] 庞辉, 郭龙, 武龙星, 等. 考虑环境温度影响的锂离子电池改进双极化模型及其荷电状态估算[J]. 电工技术学报, 2021, 36(10): 2178-2189. Pang Hui, Guo Long, Wu Longxing, et al.An improved dual polarization model of Li-ion battery and its state of charge estimation considering ambient temperature[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2178-2189. [3] 程夕明, 唐宇, 王寿群. 锂离子电池热物性参数测量方法综述[J]. 机械工程学报, 2019, 55(14): 140-150. Cheng Ximing, Tang Yu, Wang Shouqun.Thermophysical parameter measurements for lithium-ion batteries: a review[J]. Journal of Mechanical Engineering, 2019, 55(14): 140-150. [4] 范文杰, 徐广昊, 于泊宁, 等. 基于电化学阻抗谱的锂离子电池内部温度在线估计方法研究[J]. 中国电机工程学报, 2021, 41(9): 3283-3292, 30. Fan Wenjie, Xu Guanghao, Yu Boning, et al.On-line estimation method for internal temperature of lithium-ion battery based on electrochemical impedance spectroscopy[J]. Proceedings of the CSEE, 2021, 41(9): 3283-3292, 30. [5] 熊瑞, 李幸港. 基于双卡尔曼滤波算法的动力电池内部温度估计[J]. 机械工程学报, 2020, 56(14): 146-151. Xiong Rui, Li Xinggang.Battery internal temperature estimation method through double extended Kalman filtering algorithm[J]. Journal of Mechanical Engineering, 2020, 56(14): 146-151. [6] 刘素贞, 陈晶晶, 张闯, 等. 基于区域电压的锂离子电池不均匀发热模型[J]. 电工技术学报, 2022, 37(21): 5627-5636. Liu Suzhen, Chen Jingjing, Zhang Chuang, et al.Regional voltage-based uneven heating model of lithium-ion battery[J]. Transactions of China Electro-technical Society, 2022, 37(21): 5627-5636. [7] Wang Qian, Jiang Bin, Li Bo, et al.A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2016, 64: 106-128. [8] 潘国兵, 王杰, 欧阳静. 基于改进MRF-KFCM有效区域分割的储能系统三维温度场重构方法[J]. 电工技术学报, 2020, 35(19): 4019-4027. Pan Guobing, Wang Jie, Ouyang Jing.3D temperature field reconstruction method for energy storage system based on improved MRF-KFCM effective region segmentation[J]. Transactions of China Electrote-chnical Society, 2020, 35(19): 4019-4027. [9] Xu Meng, Zhang Zhuqian, Wang Xia, et al.Two-dimensional electrochemical-thermal coupled modeling of cylindrical LiFePO4 batteries[J]. Journal of Power Sources, 2014, 256: 233-243. [10] Li M, Dong C, Mu Y, et al.Parameter estimation of lithium battery thermal model based on two-stage forgetting factor least square method[C]//2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 2021: 1718-1723. [11] Yoshikawa G, Taguchi Y, Hatakeda K, et al.Development of a parameter identification method for the thermal circuit model of a lithium-ion battery installed on a battery-powered EMU[C]//2017 IEEE Vehicle Power and Propulsion Conference (VPPC), Belfort, France, 2017: 1-5. [12] Zhang Jianbo, Wu Bin, Li Zhe, et al.Simultaneous estimation of thermal parameters for large-format laminated lithium-ion batteries[J]. Journal of Power Sources, 2014, 259: 106-116. [13] 阮海军. 低温环境下锂离子电池优化加热及充电方法研究[D]. 北京: 北京交通大学, 2019. Ruan Haijun.Research on optimized heating and charging method of lithium-ion battery in low temperature environment[D]. Beijing: Beijing Jiaotong University, 2019. [14] Vertiz G, Oyarbide M, Macicior H, et al.Thermal characterization of large size lithium-ion pouch cell based on 1d electro-thermal model[J]. Journal of Power Sources, 2014, 272: 476-484. [15] Bazinski S J, Wang X, Sangeorzan B P, et al.Measuring and assessing the effective in-plane thermal conductivity of lithium iron phosphate pouch cells[J]. Energy, 2016, 114: 1085-1092. [16] Zhang Jianbo, Wu Bin, Li Zhe, et al.Simultaneous estimation of multiple thermal parameters of large-format laminated lithium-ion batteries[C]//2013 IEEE Vehicle Power and Propulsion Conference (VPPC), Beijing, 2013: 1-5. [17] 林坚生, 宋文吉, 高日新, 等. LiFePO4动力电池热物性测定及温升特性研究[J]. 电源技术, 2015, 39(4): 739-742. Lin Jiansheng, Song Wenji, Gao Rixin, et al.Study on thermo-physical property measurement and temperature rise characteristic of LiFePO4 power battery[J]. Chinese Journal of Power Sources, 2015, 39(4): 739-742. [18] 王帅林, 盛雷, 齐丽娜, 等. 大型软包锂离子电池的热物性实验研究[J]. 浙江大学学报(工学版), 2021, 55(10): 1986-1992. Wang Shuailin, Sheng Lei, Qi Lina, et al.Experimental investigation on thermophysical parameters of large-format pouch lithium-ion battery[J]. Journal of Zhejiang University: Engineering Science, 2021, 55(10): 1986-1992. [19] Zhu Gaolong, Wen Kechun, Lü Weiqiang, et al.Materials insights into low-temperature performances of lithium-ion batteries[J]. Journal of Power Sources, 2015, 300: 29-40. [20] 冯旭宁, 李建军, 王莉, 等. 锂离子电池各向异性导热的实验与建模[J]. 汽车安全与节能学报, 2012, 3(2): 158-164. Feng Xuning, Li Jianjun, Wang Li, et al.Experiments and modeling of anisotropic thermal conductivity of lithium-ion batteries[J]. Automotive Safety and Energy, 2012, 3(2):158-164.