Abstract:Aiming at the three-level converter, this paper proposes a finite-control-set model predictive control strategy considering dead-zone voltage vector. Based on the dead-zone effect, a virtual vector is synthesized from the basic voltage vector and the corresponding dead-zone voltage vector, and a new virtual vector control set is constructed by optimizing the dead-zone time. To reduce the amount of calculation, firstly, the reference vector is obtained by the deadbeat prediction. It is strictly proved that the Euclidean distance between the output vector and the reference vector is equivalent to the current prediction of the traditional value function. Therefore, a new simplified value function is constructed, which effectively reduces the complexity of iterative calculations. Secondly, the relevant basic vector is selected to construct a simplified control set, which significantly reduces the search space. Finally, the optimal virtual vector is selected by the value function based on the Euclidean distance, and the fast model predictive control with variable dead-zone time is realized. Compared with the traditional model predictive control, the control strategy proposed in this paper can decrease the output current pulsation and reduce the total harmonic distortion of the current by about 40%~50%, which significantly improves the control performance of the converter.
[1] Quevedo D E, Aguilera R P, Geyer T.Predictive control in power electronics and drives: basic concepts, theory, and methods[C]//Advanced and Intelligent Control in Power Electronics and Drives, Springer, 2014: 181-226. [2] Vazquez S, Rodriguez J, Rivera M, et al.Model predictive control for power converters and drives: advances and trends[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 935-947. [3] 李争, 安金峰, 肖宇, 等. 基于自适应观测器的永磁同步直线电机模型预测控制系统设计[J]. 电工技术学报, 2021, 36(6): 1190-1200. Li Zheng, An Jinfeng, Xiao Yu, et al.Design of model predictive control system for permanent magnet synchronous linear motor based on adaptive observer[J]. Transactions of China Electrotechnical Society, 2021, 36(6): 1190-1200. [4] 郭磊磊, 金楠, 李琰琰, 等. 电压源逆变器虚拟矢量模型预测共模电压抑制方法[J]. 电工技术学报, 2020, 35(4): 839-849. Guo Leilei, Jin Nan, Li Yanyan, et al.Virtual vector based model predictive common-mode voltage redu-ction method for voltage source inverters[J]. Transa-ctions of China Electrotechnical Society, 2020, 35(4): 839-849. [5] 胡毕华, 康龙云, 程建材, 等. 基于死区消除与补偿的T型三电平逆变器控制策略[J]. 华南理工大学学报(自然科学版), 2018, 46(5): 109-116. Hu Bihua, Kang Longyun, Cheng Jiancai, et al.Control strategy of T-type three-level inverter based on integrated dead-time elimination and compen-sation[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(5): 109-116. [6] 韩坤, 孙晓, 刘秉, 等. 一种永磁同步电机矢量控制SVPWM死区效应在线补偿方法[J]. 中国电机工程学报, 2018, 38(2): 620-627, 692. Han Kun, Sun Xiao, Liu Bing, et al.Dead-time on-line compensation scheme of SVPWM for permanent magnet synchronous motor drive system with vector control[J]. Proceedings of the CSEE, 2018, 38(2): 620-627, 692. [7] Ngo V Q B, Vu V H, Pham V T, et al. Lyapunov-induced model predictive power control for grid-tie three-level neutral-point-clamped inverter with dead-time compensation[J]. IEEE Access, 2019, 7: 166869-166882. [8] Zhang Xiaoguang, Cheng Yu, Zhao Zhihao, et al.Optimized model predictive control with dead-time voltage vector for PMSM drives[J]. IEEE Transa-ctions on Power Electronics, 2021, 36(3): 3149-3158. [9] Zhang Xiaoguang, Zhao Zhihao.Model predictive control for PMSM drives with variable dead-zone Time[J]. IEEE Transactions on Power Electronics, 2021, 36(9): 10514-10525. [10] 吴琪, 胡存刚, 张云雷, 等. 三电平ANPC变换器快速模型预测控制策略研究[J]. 电力电子技术, 2020, 54(4): 103-106. Wu Qi, Hu Cungang, Zhang Yunlei, et al.Research on fast model predictive control strategy for three-level ANPC converter[J]. Power Electronics, 2020, 54(4): 103-106. [11] 辛业春, 王延旭, 李国庆, 等. T型三电平并网逆变器有限集模型预测控制快速寻优方法[J]. 电工技术学报, 2021, 36(8): 1681-1692. Xin Yechun, Wang Yanxu, Li Guoqing, et al.Finite control set model predictive control method with fast optimization based on T-type three-level grid-connected inverter[J]. Transactions of China Elec-trotechnical Society, 2021, 36(8): 1681-1692. [12] 王洋, 程志江, 李永东. 三电平并网变换器的模型预测控制[J]. 电力系统及其自动化学报, 2018, 30(10): 34-41. Wang Yang, Cheng Zhijiang, Li Yongdong.Model predictive control of three-level grid-connected converter[J]. Proceedings of the CSU-EPSA, 2018, 30(10): 34-41. [13] Yang Yong, Wen Huiqing, Fan Mingdi, et al.Fast finite-switching-state model predictive control method without weighting factors for T-type three-level three-phase inverters[J]. IEEE Transactions on Indu-strial Informatics, 2019, 15(3): 1298-1310. [14] 姚绪梁, 麻宸伟, 王景芳, 等. 基于预测误差补偿的鲁棒型永磁同步电机模型预测电流控制[J]. 中国电机工程学报, 2021, 41(17): 6071-6080. Yao Xuliang, Ma Chenwei, Wang Jingfang, et al.Robust model predictive current control for PMSM based on prediction error compensation[J]. Pro-ceedings of the CSEE, 2021, 41(17): 6071-6080. [15] Cortes P, Rodriguez J, Silva C, et al.Delay com-pensation in model predictive current control of a three-phase inverter[J]. IEEE Transactions on Indu-strial Electronics, 2012, 59(2): 1323-1325. [16] 尹忠刚, 白聪, 杜超, 等. 基于内模干扰观测器的永磁同步直线电机无差拍电流预测控制方法[J]. 电工技术学报, 2018, 33(24): 5741-5750. Yin Zhonggang, Bai Cong, Du Chao, et al.Deadbeat predictive current control for permanent magnet linear synchronous motor based on internal model dis-turbance observer[J]. Transactions of China Electro-technical Society, 2018, 33(24): 5741-5750. [17] 於锋, 朱晨光, 吴晓新, 等. 基于矢量分区的永磁同步电机三电平双矢量模型预测磁链控制[J]. 电工技术学报, 2020, 35(10): 2130-2140. Yu Feng, Zhu Chenguang, Wu Xiaoxin, et al.Two-vector-based model predictive flux control of three-level based permanent magnet synchronous motor with sector subregion[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2130-2140. [18] 张晓光, 闫康, 张文涵. 开绕组永磁同步电机混合双矢量模型预测控制[J]. 电工技术学报, 2021, 36(1): 96-106. Zhang Xiaoguang, Yan Kang, Zhang Wenhan.Hybrid double vector model predictive control for open-winding permanent magnet synchronous motor with common DC bus[J]. Transactions of China Elec-trotechnical Society, 2021, 36(1): 96-106. [19] Dang Chaoliang, Tong Xiangqian, Song Weizhang, et al.Cost function-based modulation scheme of model predictive control for VIENNA rectifier[J]. IET Power Electronics, 2019, 12(14): 3646-3655. [20] 王祯, 尹项根, 陈玉, 等. 基于连续控制集模型预测控制的MMC桥臂电流控制策略[J]. 电力系统自动化, 2020, 44(10): 85-91. Wang Zhen, Yin Xianggen, Chen Yu, et al.Arm current control strategy of modular multilevel converter based on continuous control set model predictive control[J]. Automation of Electric Power Systems, 2020, 44(10): 85-91. [21] 兰志勇, 王波, 徐琛, 等. 永磁同步电机新型三矢量模型预测电流控制[J]. 中国电机工程学报, 2018, 38(增刊1): 243-249. Lan Zhiyong, Wang Bo, Xu Chen, et al.A novel three-vector model predictive current control for permanent magnet synchronous motor[J]. Proceedings of the CSEE, 2018, 38(S1): 243-249.