Abstract:Base on a novel characteristic length scale (the square root of cross-sectional), a comprehensive thermal model for the typical forced air cooling system of power electronic devices was proposed integrating heat conduction, convection heat transfer and fluid mechanics theories. In order to improve the accuracy and efficiency of the thermal design, an optimized design method for the optimal volume was proposed for the high-power and high-density power electronic device. Taking a 380V/50kvar high power density static var generator (SVG) as an example, compared with the experimental results, the average thermal resistance error of the comprehensive thermal model is within 7%, that is, the corresponding surface temperature rise is within 1.3℃ when SVG is running at full load. The accuracy of the comprehensive thermal model is improved by 62% compared with the traditional thermal models. Consenquently, the demention volume of the cooling part designed based on the proposed method is 4.03L, which is 30% smaller than the volume of 5.7L designed by the traditional methods.
林弘毅, 伍梁, 郭潇, 陈国柱. 高功率密度SiC静止无功补偿器强迫风冷散热综合建模及优化设计方法[J]. 电工技术学报, 2021, 36(16): 3446-3456.
Lin Hongyi, Wu Liang, Guo Xiao, Chen Guozhu. A Comprehensive Model of Forced Air Cooling and Optimal Design Method of High Power Density SiC-Static Var Generator. Transactions of China Electrotechnical Society, 2021, 36(16): 3446-3456.
[1] Laloya E, Lucía Ó, Sarnago H, et al.Heat manage- ment in power converters: from state of the art to future ultrahigh efficiency systems[J]. IEEE Transa- ctions on Power Electronics, 2016, 31(11): 7896-7908. [2] 周林, 李寒江, 解宝, 等. SiC MOSFET的Saber建模及其在光伏并网逆变器中的应用和分析[J]. 电工技术学报, 2019, 34(20): 4251-4263. Zhou Lin, Li Hanjiang, Xie Bao, et al.Saber modeling of SiC MOSFET and its application and analysis in photovoltaic grid-connected inverter[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4251-4263. [3] 肖龙, 伍梁, 李新, 等. 高频LLC变换器平面磁集成矩阵变压器的优化设计[J]. 电工技术学报, 2020, 35(4): 758-766. Xiao Long, Wu Liang, Li Xin, et al.Optimal design of planar magnetic integrated matrix transformer for high frequency LLC converter[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 758-766. [4] 胡建辉, 李锦庚, 邹继斌, 等. 变频器中的IGBT模块损耗计算及散热系统设计[J]. 电工技术学报, 2009, 24(3): 159-163. Hu Jianhui, Li Jingeng, Zou Jibin, et al.Losses calculation of IGBT module and heat dissipation system design of inverters[J]. Transactions of China Electrotechnical Society, 2009, 24(3): 159-163. [5] 丁杰, 张平. 电机控制器用IGBT风冷散热器的热仿真与实验[J]. 电源学报, 2015, 13(2): 38-44. Ding Jie, Zhang Ping.Thermal analysis and experi- mental of IGBT air-cooled radiator for motor controller[J]. Journal of Power Supply, 2015, 13(2): 38-44. [6] 何文志, 丘东元, 肖文勋, 等. 高频大功率开关电源结构的热设计[J]. 电工技术学报, 2013, 28(2): 185-191, 218. He Wenzhi, Qiu Dongyuan, Xiao Wenxun, et al.Thermal design of high frequency high power switched- mode power supply[J]. Transactions of China Electro- technical Society, 2013, 28(2): 185-191, 218. [7] 刘超, 贾晓宇, 胡长生, 等. 电动汽车SiC MOSFET风冷逆变器的散热器设计[J]. 电源学报, 2018, 16(3): 151-157. Liu Chao, Jia Xiaoyu, Hu Changsheng, et al.Design of heat sink for electric vehicle SiC MOSFET air- cooled inverter[J]. Journal of Power Supply, 2018, 16(3): 151-157. [8] Drofenik U, Stupar A, Kolar J W.Analysis of theoretical limits offorced-air cooling using advanced composite materials with high thermal conducti- vities[J]. IEEE Transactions on Components, Pack- aging and Manufacturing Technology, 2011, 4(11): 528-535. [9] Kolar J W, Zach F C, Casanellas F.Losses in PWM inverters using IGBTs[J]. IEE Proceedings-Electric Power Applications, 1995, 142(4): 285-288. [10] 白保东, 陈德志, 王鑫博. 逆变器IGBT损耗计算及冷却装置设计[J]. 电工技术学报, 2013, 28(8): 97-106. Bai Baodong, Chen Dezhi, Wang Xinbo.Loss calculation of inverter IGBT and design of cooling device[J]. Transactions of China Electrotechnical Society, 2013, 28(8): 97-106. [11] 传热学. 电力电子器件热管理[M]. 北京: 机械工业出版社, 2013. [12] Gammeter C, Krismer F, Kolar J W.Weight optimi- zation of a cooling system composed of fan and extruded-fin heat sink[J]. IEEE Transactions on Industry Applications, 2015, 51(1): 2193-2200. [13] Muzychka Y S, Yovanovich M M.Laminar forced convection heat transfer in the combined entry region of non-circular ducts[J]. Journal of Heat Transfer, 2004, 126(1): 54-61. [14] Muzychka Y S, Yovanovich M M.Pressure drop in laminar developing flow in noncircular ducts: a scaling and modeling approach[J]. Journal of Fluids Engineering, 2009, 131(11): 105-111. [15] Simons R E.A simple thermal resistance model isoflux versus isothermal[J]. Electronics Cooling, 2006, 13(6): 10-14.