Effect of Material Properties of XLPE/SIR and Interface Charge Accumulation on Electric Field Distribution of HVDC Cable Accessory
Li Guochang1, Wang Jiaxing1, Wei Yanhui1, Zhang Sheng2, Lei Qingquan1
1. Institute of Advanced Electrical Materials Qingdao University of Science and Technology Qingdao 266042 China; 2. Global Energy Interconnection Research Institute Beijing 102200 China
Abstract:Interface charge accumulation between double-layer dielectric is the key factor causing interface discharge of the high voltage direct current (HVDC) cable accessory. In this paper, the dielectric properties, conductivity and thermal conductivity of XLPE and SIR were measured. The charge accumulation properties of the XLPE/SIR interface and the variation of internal electric field caused by local electric field distortion were studied. The experimental results show that as the temperature increases, the conductivity of XLPE increases significantly, while the conductivity of SIR increases relatively slowly. The mismatch of the conductivity of the two materials at high temperature is an important reason for the interface charge accumulation. At room temperature, the negative charge at the XLPE/SIR interface is about 3.42×10-4C/m2, which will enhance the electric field of the cable main insulation and weaken the electric field distortion at the root of the stress cone. Electric field of the main insulation increases about 36% and the electric field distortion at the stress cone root decreases about 62%. When the temperature exceeds about 36℃, positive charges begin to accumulate at the interface of XLPE/SIR. As the temperature increases, polarity reversal phenomenon occurs, which leads to aggravation of the local electric field distortion at the root of stress cone, and the maximum distortion electric field reaches 12kV/mm at 70℃.
李国倡, 王家兴, 魏艳慧, 张升, 雷清泉. 高压直流电缆附件XLPE/SIR材料特性及界面电荷积聚对电场分布的影响[J]. 电工技术学报, 2021, 36(14): 3081-3089.
Li Guochang, Wang Jiaxing, Wei Yanhui, Zhang Sheng, Lei Qingquan. Effect of Material Properties of XLPE/SIR and Interface Charge Accumulation on Electric Field Distribution of HVDC Cable Accessory. Transactions of China Electrotechnical Society, 2021, 36(14): 3081-3089.
[1] 尚康良, 曹均正, 赵志斌, 等. 320kV高压直流电缆接头仿真分析和结构优化设计[J]. 中国电机工程学报, 2016, 36(7): 2018-2024. Shang Kangliang, Cao Junzheng, Zhao Zhibin, et al.Simulation analysis and design optimization of 320kV HVDC cable joint[J]. Proccdings of the CSEE, 2016, 36(7): 2018-2024. [2] 杜伯学, 韩晨磊, 李进, 等. 高压直流电缆聚乙烯绝缘材料研究现状[J].电工技术学报, 2019, 34(1): 179-191. Du Boxue, Han Chenlei, Li Jin, et al.Research status of polyethylene insulation for high voltage direct current cables[J]. Transactions of China Electro- technical Society, 2019, 34(1): 179-191. [3] 刘云鹏, 刘贺晨, 李演达, 等. 直流叠加交流电压下交联聚乙烯中电树枝特性研究[J]. 电工技术学报, 2018, 33(3): 601-608. Liu Yunpeng, Liu Hechen, Li Yanda, et al.Research of the electrical tree properties in XLPE under DC-AC composite voltages[J]. Transactions of China Electrotechnical Society, 2018, 33(3): 601-608. [4] Li Jin, Du Boxue, Xu Hang.Suppressing interface charge between LDPE and EPDM for HVDC cable accessory insulation[J]. IEEE Transaction on Die- lectric and Electrical Insulation, 2017, 24(3): 1331-1339. [5] 张瑞敏, 张沛红, 宋淑伟, 等. 界面空间电荷对高压直流电缆终端电场分布的影响[J]. 高电压技术, 2019, 45(6): 1762-1766. Zhang Ruimin, Zhang Peihong, Song Shuwei, et al.Effect of interfacial space charge on electric field distribution of HVDC cable terminal[J]. High Voltage Engineering, 2019, 45(6): 1762-1766. [6] 白龙雷, 周利军, 邢立勐, 等. 高寒环境下低温对乙丙橡胶电缆终端界面放电特性的影响[J]. 电工技术学报, 2020, 35(3): 646-658. Bai Longlei, Zhou Lijun, Xing Limeng, et al.Effect of low temperature on interface discharge characteri- stics of ethylene-propylene rubber cable termination in high-cold environment[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 646-658. [7] Wang Xia, Wang Chengcheng, Wu Kai, et al.An improved optimal design scheme for high voltage cable accessories[J]. IEEE Transaction on Dielectrics and Electrical Insulation, 2014, 21(1): 5-15. [8] 孙略, 张沛红, 李中原, 等. 高压直流电缆终端硅橡胶基非线性复合材料[J]. 高电压技术, 2019, 45(5): 1654-1665. Sun Lüe, Zhang Peihong, Li Zhongyuan, et al.Silicone rubber nonlinear composites for HVDC cable terminals[J]. High Voltage Engineering, 2019, 45(5): 1654-1665. [9] 周远翔, 陈明, 张云霄, 等. 直流场下温度对硅橡胶电树枝起始特性的影响[J]. 高电压技术, 2018, 44(12): 3784-3790. Zhou Yuanxiang, Chen Ming, Zhang Yunxiao, et al.Influence of temperature on DC electrical tree initi- ation in silicone rubber[J]. High Voltage Engineering, 2018, 44(12): 3784-3790. [10] Takeda T, Hozmmi N, Suzuki H, et al.Space charge behavior in full size 250kV DC XLPE cable[J]. IEEE Transactions on Power Delivery, 1998, 13(1): 28-39. [11] Chen G, Xu Zhiqiang.Charge trapping and detrapping in polymeric materials[J]. Journal of Applied Physics, 2009, 106(12): 123707. [12] Chen G, Tanaka Y, Takada T, et al.Effect of polyethylene interface on space charge formation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(1): 113-121. [13] Li Shengtao, Zhao Ni, Nie Yongjie, et al.Space charge characteristics of LDPE nanocomposite/LDPE insulation system[J]. IEEE Transactions on Die- lectrics and Electrical Insulation, 2015, 22(1): 92-100. [14] Li Guochang, Liu Mingyue, Lei Qingquan, et al.Conductivity and interface charge accumulation between XLPE and SIR for HVDC cable accessory[J]. Journal of Material Science: Materials in Electronics, 2019, 30(2): 1450-1457. [15] 陈庆国, 秦艳军, 尚南强, 等. 温度对高压直流电缆中间接头内电场分布的影响分析[J]. 高电压技术, 2014, 40(9): 2619-2626. Chen Qingguo, Qin Yanjun, Shang Nanqiang, et al.Influence analysis of temperature on electric filed distribution in HVDC cable joint[J]. High Voltage Engineering, 2014, 40(9): 2619-2626. [16] 刘刚, 王鹏宇, 毛健琨, 等. 高压电缆接头温度场分布的仿真计算[J]. 高电压技术, 2018, 44(11): 3688-3698. Liu Gang, Wang Pengyu, Mao Jiankun, et al.Simu- lation calculation of temperature field distribution in high voltage cable joints[J]. High Voltage Engin- eering, 2018, 44(11): 3688-3698. [17] 卞佳音, 李永兰, 单鲁平, 等. 500kV电力电缆稳态热路模型分析及载流量计算[J]. 绝缘材料, 2019, 52(9): 96-101. Bian Jiayin, Li Yonglan, Shan Luping, et al.Analysis of steady-state heat path model and calculation of current carrying capacity for 500kV power cable[J]. Insulating Materials, 2019, 52(9): 96-101. [18] 梁永春. 高压电力电缆温度场和载流量评估研究动态[J]. 高电压技术, 2016, 42(11): 3760-3765. Liang Yongchun.Technological development ineva- luating the temperature and ampacity of power cable[J]. High Voltage Engineering, 2016, 42(11): 3760-3765. [19] 额定电压500kV交联聚乙烯绝缘电力电缆及其附件: GB/T 22078 GB/T 22078.3-2008[S]. 北京: 中国标准出版社, 2008. [20] 陈庆国, 尚南强, 魏昕喆. 热老化对液体硅橡胶材料介电性能及力学特性的影响研究[J]. 电机与控制学报, 2020, 24(4): 141-148. Chen Qingguo, Shang Nanqiang, Wei Xinzhe.Influence of thermal oxygen aging on dielectric and mechanical properties of liquid silicone rubber[J]. Electric Machines and Control, 2020, 24(4): 141-148.