1. School of Electrical Engineering Wuhan University Wuhan 430072 China; 2. School of Power and Mechanical Engineering Wuhan University Wuhan 430072 China
Abstract:It has been a long sought goal for the field of high voltage engineering to obtain the discharge voltage of air gaps by mathematical calculations instead of experiments. Therefore, a new idea for the discharge voltage prediction of air gaps was proposed in this paper, which is based on the physical thought that the insulation breakdown is due to the out-of-limit of the stored energy. The complicated air discharge process study was moved forward to the study of the energy storage status of the gap structure and its influence factors. The feature set used to characterize the energy storage status of air gap was defined from two aspects, including the electric field distribution and the impulse voltage waveform. The air gap discharge voltage prediction model was established by support vector machine (SVM). By the proposed model, the 50% discharge voltage prediction of rod-plane and rod-rod long air gaps with different gap lengths was successfully achieved, under positive and negative switching impulse voltage with different wavefronts. The mean absolute percentage errors of the predicted results of 4 test sample sets are respectively 3.6%, 3.25%, 3.5% and 3.8%. This method contributes to promoting the digital design of external insulation, and provide reference for establishing the discipline system of computational high voltage engineering.
邱志斌, 阮江军, 唐烈峥, 徐闻婕, 黄从鹏. 空气间隙的储能特征与放电电压预测[J]. 电工技术学报, 2018, 33(1): 185-194.
Qiu Zhibin, Ruan Jiangjun, Tang Liezheng, Xu Wenjie, Huang Congpeng. Energy Storage Features and Discharge Voltage Prediction of Air Gaps. Transactions of China Electrotechnical Society, 2018, 33(1): 185-194.
[1] 霍锋, 万启发, 谷定燮, 等. 1 000 kV与500 kV交流线路同塔架设相间放电特性及绝缘配合[J]. 中国电机工程学报, 2012, 32(34): 142-150. Huo Feng, Wan Qifa, Gu Dingxie, et al. Flashover characteristics and insulation coordination of phase- to-phase air-gaps for AC transmission line with 1 000 kV double-circuit and 500 kV double-circuit on the same tower[J]. Proceedings of the CSEE, 2012, 32(34): 142-150. [2] 丁玉剑, 廖蔚明, 宿志一, 等. ±800 kV同塔双回直流线路杆塔空气间隙的放电特性影响因素研究[J]. 中国电机工程学报, 2014, 34(18): 2983-2989. Ding Yujian, Liao Weiming, Su Zhiyi, et al. Research on the influence factors of discharge characteristics of air gaps for ±800 kV double line transmission towers [J]. Proceedings of the CSEE, 2014, 34(18): 2983- 2989. [3] 周济. 智能制造——“中国制造2025”的主攻方向[J]. 中国机械工程, 2015, 26(17): 2273-2284. Zhou Ji. Intelligent manufacturing—main direction of “made in China 2025”[J]. China Mechanical Engineering, 2015, 26(17): 2273-2284. [4] 李庆民, 黄旭炜, 刘涛, 等. 分子模拟技术在高电压绝缘领域的应用进展[J]. 电工技术学报, 2016, 31(12): 1-13. Li Qingmin, Huang Xuwei, Liu Tao, et al. Applica- tion progresses of molecular simulation methodology in the area of high voltage insulation[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 1-13. [5] CIGRE Working Group 33.07. Guidelines for the evaluation of the dielectric strength of external insulation[R]. CIGRE Technical Brochures 72, 1992. [6] Goelian N, Lalande P, Bondiou-Clergerie A, et al. A simplified model for the simulation of positive-spark development in long air gaps[J]. Journal of Physics D: Applied Physics, 1997, 30(17): 2441-2452. [7] Fofana I, Béroual A. A model for long air gap discharge using an equivalent electrical network[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1996, 3(2): 273-282. [8] Becerra M, Cooray V. A self-consistent upward leader propagation model[J]. Journal of Physics D: Applied Physics, 2006, 39(16): 3708-3715. [9] 耿屹楠, 庄池杰, 曾嵘, 等. 正极性雷电冲击电压下流注起始特性研究[J]. 中国电机工程学报, 2012, 32(19): 148-153. Geng Yinan, Zhuang Chijie, Zeng Rong, et al. Streamer inception characteristics under positive lightning impulse voltage[J]. Proceedings of the CSEE, 2012, 32(19): 148-153. [10] 谢耀恒, 贺恒鑫, 陈维江, 等. 操作冲击下正极性长间隙放电物理仿真模型[J]. 中国电机工程学报, 2013, 33(31): 177-184. Xie Yaoheng, He Hengxin, Chen Weijiang, et al. A physical model to simulate long air gap discharge at positive switching impulse voltage[J]. Proceedings of the CSEE, 2013, 33(31): 177-184. [11] 谷山强, 谢施君, 向念文, 等. 长间隙正极性放电流注-先导发展3维物理仿真研究[J]. 高电压技术, 2014, 40(9): 2903-2910. Gu Shanqiang, Xie Shijun, Xiang Nianwen, et al. Research on simulation of three-dimensional streamer-leader propagation for positive long gap discharge[J]. High Voltage Engineering, 2014, 40(9): 2903-2910. [12] 陈维江, 贺恒鑫, 何俊佳, 等. 输电线路雷电先导发展三维仿真模型[J]. 中国电机工程学报, 2014, 34(36): 6601-6612. Chen Weijiang, He Hengxin, He Junjia, et al. On the 3-dimentional leader progression model for the lightning shielding failure performance estimation of overhead transmission lines[J]. Proceedings of the CSEE, 2014, 34(36): 6601-6612. [13] 师伟, 李庆民. 基于先导放电理论的雷击上行先导起始研究[J]. 中国电机工程学报, 2014, 34(15): 2470-2477. Shi Wei, Li Qingmin. Research on the lightning upward leader inception based on leader discharge theory[J]. Proceedings of the CSEE, 2014, 34(15): 2470-2477. [14] 陈维江, 曾嵘, 贺恒鑫. 长空气间隙放电研究进展[J]. 高电压技术, 2013, 39(6): 1281-1295. Chen Weijiang, Zeng Rong, He Hengxin. Research progress of long air gap discharges[J]. High Voltage Engineering, 2013, 39(6): 1281-1295. [15] 曾嵘, 庄池杰, 余占清, 等. 长空气间隙放电研究的挑战与进展[J]. 高电压技术, 2014, 40(10): 2945-2955. Zeng Rong, Zhuang Chijie, Yu Zhanqing, et al. Challenges and achievement in long air gap discharge research[J]. High Voltage Engineering, 2014, 40(10): 2945-2955. [16] Boggs S A, Uchii T, Nishiwaki S. Analytical approach of SF 6 breakdown under transient conditions[J]. IEEE Transactions on Power Delivery, 2003, 18(3): 751-757. [17] 舒胜文, 阮江军, 黄道春, 等. 基于电场特征量和SVM的空气间隙击穿电压预测[J]. 中国电机工程学报, 2015, 35(3): 742-750. Shu Shengwen, Ruan Jiangjun, Huang Daochun, et al. Prediction for breakdown voltage of air gap based on electric field features and SVM[J]. Proceedings of the CSEE, 2015, 35(3): 742-750. [18] 廖瑞金, 伍飞飞, 刘康淋, 等. 棒-板电极直流负电晕放电脉冲过程中的电子特性研究[J]. 电工技术学报, 2015, 30(10): 319-329. Liao Ruijin, Wu Feifei, Liu Kanglin, et al. Simulation of characteristics of electrons during a pulse cycle in bar-plate DC negative corona discharge[J]. Transac- tions of China Electrotechnical Society, 2015, 30(10): 319-329. [19] Menemenlis C, Isaksson K. The front shape of switching impulses and its effect on breakdown parameters[J]. IEEE Transactions on Power Appara- tus and Systems, 1974, 93(5): 1380-1389. [20] Vapnik V N. The nature of statistical learning theory [M]. New York: Springer-Verlag, 1995. [21] Qiu Z B, Ruan J J, Huang D C, et al. Hybrid prediction of the power frequency breakdown voltage of short air gaps based on orthogonal design and support vector machine[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(2): 795-805. [22] 邱志斌, 阮江军, 黄道春, 等. 直流导线和阀厅金具的电晕起始电压预测[J]. 电工技术学报, 2016, 31(12): 80-89. Qiu Zhibin, Ruan Jiangjun, Huang Daochun, et al. Prediction on corona onset voltage of DC conductors and valve hall fittings[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 80-89. [23] 邱志斌, 阮江军, 黄道春, 等. 基于支持向量机的棒-板空气间隙击穿电压预测方法及其应用[J]. 电工技术学报, 2017, 32(19): 220-228. Qiu Zhibin, Ruan Jiangjun, Huang Daochun, et al. Breakdown voltage prediction method of rod-plane air gaps based on support vector machine and its applications[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 220-228. [24] 薛浩然, 张珂珩, 李斌, 等. 基于布谷鸟算法和支持向量机的变压器故障诊断[J]. 电力系统保护与控制, 2015, 43(8): 8-13. Xue Haoran, Zhang Keheng, Li Bin, et al. Fault diagnosis of transformer based on the cuckoo search and support vector machine[J]. Power System Protec- tion and Control, 2015, 43(8): 8-13. [25] 杨淑莹. 模式识别与智能计算——Matlab技术实现[M]. 2版. 北京: 电子工业出版社, 2011. [26] Watanabe Y. Switching surge flashover characteris- tics of extremely long air gaps[J]. IEEE Transactions on Power Apparatus and Systems, 1967, 86(8): 933- 936.