Movement Characteristics of the Gas in Discharge Channel after Air Gap Breakdown
Liu Xiaopeng1, Dong Manling2, Deng Huwei1,3, Zhao Xiangen1, He Junjia1
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China; 2. State Grid Henan Electric Power Corporation Research Institute Zhengzhou 450052 China; 3. Maoming Power Supply Bureau Guangdong Power Grid Co. Ltd Maoming 525000 China
Abstract:The movement of the gas in the discharge channel after the air gap breakdown is related to the recovery of the gap insulation strength, and the degree of recovery of the insulation strength has a decisive influence on the success of the reclosure after the transmission line is tripped due to the gap discharge. In this paper, high-speed schlieren technology was used to obtain the schlieren images of the discharge channel evolution process after the rod-to-plate air gap breakdown and the space-time distribution of the gas velocity field in the discharge channel after the gap breakdown was obtained based on the optical flow method. The results show that the average velocity of the gas movement in the discharge channel after the gap breakdown decays in a “double exponential” manner; the probability that the jet at the edge of the discharge channel develops into turbulence is small, and at the same time, the development of the jet makes the discharge channel first show the trend of ‘changing from bending to straightening' and then gradually becoming irregular; the gas movement direction in the discharge channel close to the rod electrode shows an opposite trend, which helps the discharge channel in the rod electrode area to recover firstly to the state before discharge.
刘晓鹏, 董曼玲, 邓虎威, 赵贤根, 何俊佳. 空气间隙击穿后放电通道内的气体运动特性[J]. 电工技术学报, 2021, 36(13): 2667-2674.
Liu Xiaopeng, Dong Manling, Deng Huwei, Zhao Xiangen, He Junjia. Movement Characteristics of the Gas in Discharge Channel after Air Gap Breakdown. Transactions of China Electrotechnical Society, 2021, 36(13): 2667-2674.
[1] 张刘春. ±1100kV特高压直流输电线路防雷保护[J]. 电工技术学报, 2018, 33(19): 4611-4617. Zhang Liuchun.Lightning protection of ±1 100kV UHVDC transmission line[J]. Transactions of China Electrotechnical Society, 2018, 33(19): 4611-4617. [2] 蔡国伟, 雷宇航, 葛维春, 等. 高寒地区风电机组雷电防护研究综述[J]. 电工技术学报, 2019, 34(22): 4804-4815. Cai Guowei, Lei Yuhang, Ge Weichun, et al.Review of research on lightning protection for wind turbines in alpine areas[J]. Transactions of China Electrotechnical Society, 2019, 34(22): 4804-4815. [3] 邱志斌, 阮江军, 唐烈峥, 等. 空气间隙的储能特征与放电电压预测[J]. 电工技术学报, 2018, 33(1): 185-194. Qiu Zhibin, Ruan Jiangjun, Tang Leizheng, et al.Energy storage features and discharge voltage prediction of air gaps[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 185-194. [4] 邓慰, 孟刚, 陈勇, 等. 高海拔地区500kV单回输电线路空气间隙放电特性[J]. 电工技术学报, 2013, 28(9): 255-260, 267. Deng Wei, Meng Gang, Chen Yong, et al.Flashover characteristic for high altitude 500kV single-circuit transmission line[J]. Transactions of China Electrotechnical Society, 2013, 28(9): 255-260, 267. [5] 袁宇春, 张保会. 对整定线路重合闸时间的讨论[J]. 继电器, 2000(1): 13-15. Yuan Yuchun, Zhang Baohui.Discussions for setting reclosing time of transmission lines[J]. Relay, 2000(1): 13-15. [6] Bogatov N, Syssoev V, Bulatov M, et al.Microwave diagnostics of the streamer zone of a long spark[C]//ITM Web of Conferences, EDP Sciences, 2019, 30: 11007. [7] 万启发, 霍锋, 谢梁, 等. 长空气间隙放电特性研究综述[J]. 高电压技术, 2012, 38(10): 2499-2505. Wan Qifa, Huo Feng, Xie Liang, et al.Summary of research on flashover characteristics of long air-gap[J]. High Voltage Engineering, 2012, 38(10): 2499-2505. [8] 陈维江, 曾嵘, 贺恒鑫. 长空气间隙放电研究进展[J]. 高电压技术, 2013, 39(6): 1281-1295. Chen Weijiang, Zeng Rong, He Hengxin.Research progress of long air gap discharges[J]. High Voltage Engineering, 2013, 39(6): 1281-1295. [9] 刘昌, 周旋, 庄池杰, 等. 两种湿度下特高压尺度真型工程间隙操作冲击放电试验观测[J]. 电工技术学报, 2019, 34(10): 2239-2246. Liu Chang, Zhou Xuan, Zhuang Chijie, et al.Observation of leader discharges in UHV engineering real-size air gaps under switching impulse under two kinds of humidity[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2239-2246. [10] 杨亚奇, 李卫国, 夏喻, 等. 低气压下长间隙交直流放电特性研究[J]. 电工技术学报, 2018, 33(5): 1143-1150. Yang Yaqi, Liweiguo, Xia Yu, et al.Research of AC and DC discharge characteristics of long gap under low pressure[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 1143-1150. [11] Li H P, Ostrikov K K, Sun W.The energy tree: non-equilibrium energy transfer in collision-dominated plasmas[J]. Physics Reports, 2018, 770: 1-45. [12] Zhao Xianggen, Liu Lipeng, Yue Yishi, et al.On the use of quantitative Schlieren techniques in temperature measurement of leader discharge channels[J]. Plasma Sources Science and Technology, 2019, 28(7): 075012. [13] Greig J R, Pechacek R E, Raleigh M.Channel cooling by turbulent convective mixing[J]. The Physics of Fluids, 1985, 28(8): 2357-2364. [14] Leonov S B, Isaenkov Y I, Firsov A A, et al.Jet regime of the afterspark channel decay[J]. Physics of Plasmas, 2010, 17(5): 053505. [15] 刘晓鹏, 赵贤根, 刘磊, 等. 长空气间隙放电通道的绝缘恢复特性[J]. 电工技术学报, 2021, 36(2): 380-387. Liu Xiaopeng, Zhao Xiangen, Liu Lei, et al.Characteristics of the discharge channel during the relaxation process in the long air gap[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 380-387. [16] Dumitrache C, Gallant A, Minesi N, et al.Hydrodynamic regimes induced by nanosecond pulsed discharges in air: mechanism of vorticity generation[J]. Journal of Physics D: Applied Physics, 2019, 52(36): 364001. [17] Xu Li, Jia Jiaya, Matsushita Y.Motion detail preserving optical flow estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 34(9): 1744-1757. [18] Liu Tianshu, Shen Lixin.Fluid flow and optical flow[J]. Journal of Fluid Mechanics, 2008, 614: 253-291. [19] Horn B K P, Schunck B G. Determining optical flow[C]//Techniques and Applications of Image Understanding, International Society for Optics and Photonics, 1981, 281: 319-331. [20] Sun D, Roth S, Black M J.A quantitative analysis of current practices in optical flow estimation and the principles behind them[J]. International Journal of Computer Vision, 2014, 106(2): 115-137. [21] Sun D, Roth S, Lewis J P, et al.Learning optical flow[C]//European Conference on Computer Vision. Springer, Berlin, Heidelberg, 2008: 83-97. [22] Tao M, Bai J, Kohli P, et al.SimpleFlow: a non-iterative, sublinear optical flow algorithm[C]// Computer Graphics Forum, Oxford, UK: Blackwell Publishing Ltd, 2012, 31: 345-353. [23] Yue Yishi, He Junjia.Digital time-resolved optical measurement of discharge currents in long air gaps[J]. Review of Scientific Instruments, 2013, 84(8): 085107. [24] Zhao Xiangen, He Junjia, Luo Bing, et al.Relaxation process of the discharge channel near the anode in long air gaps under positive impulse voltages[J]. Journal of Physics D: Applied Physics, 2017, 50(48): 485206. [25] Cui Yingzhe, Zhuang Chijie, Zeng R, et al.Shock wave in a long-air-gap leader discharge[J]. AIP Advances, 2019, 9(6): 065011. [26] Shurupov M A, Leonov S B, Firsov A A, et al.Gasdynamic instabilities during decay of the submicrosecond spark discharge channel[J]. High Temperature, 2014, 52(2): 169-178. [27] Korytchenko K V, Essmann S, Markus D, et al.Numerical and experimental investigation of the channel expansion of a low-energy spark in the air[J]. Combustion Science and Technology, 2019, 191(12): 2136-2161. [28] Leonov S, Isaenkov Y, Yarantsev D, et al.Unstable pulse discharge in mixing layer of gaseous reactants[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, 2009: 820. [29] Greig J R, Pechacek R E, Raleigh M.Channel cooling by turbulent convective mixing[J]. The Physics of Fluids, 1985, 28(8): 2357-2364. [30] Leonov S V, Isaenkov Y I, Shneider M N.Suppression of the turbulent decay of an afterspark channel with residual current[J]. Physics of Plasmas, 2007, 14(12): 123504. [31] 丁祖荣. 流体力学 (上册)[M]. 2版. 北京: 高等教育出版社, 2013. [32] Domens P, Gibert A, Dupuy J, et al.Leader filament study near the anode in a rod plane gap[J]. Journal of Physics D: Applied Physics, 1991, 24(7): 1088-1097. [33] Les Renardières Group.Double impulse tests of long airgaps. Part 2: leader decay and reactivation[J]. Physical Science, Measurement and Instrumentation, Management and Education Reviews, IEE Proceedings A, 1986, 133(7): 410-437.