Abstract:Electrostatic motor has the merits of no magnets, no coils, simple structure and high efficiency, which has potential application prospects in microelectromechanical systems (MEMS). However, there is no theoretical model for the linear electrostatic motor based on variable capacitance. Taking a double-excited linear electrostatic motor as an example, the distribution of electric field inside the motor was obtained by solving the Poisson equation and Laplace equation in the case of multi-layer media. Then, the thrust characteristics of the motor were obtained through the virtual displacement method, thereby establishing a complete mathematical model of the motor and calculating the thrust curve and the maximum field strength of the electric motor. The thrust curve can be used to guide the design of the motor commutation system. Then, a two-dimensional finite element model of the motor was established, and the simulation results have verified the correctness of the mathematical model. Finally, according to the relationship between each parameter of the motor and the maximum thrust, combined with the Sobol sensitivity analysis, the motor was optimized. The results show that the input voltage, the permittivity and the distance between the stator and the slider have the greatest influence on the motor thrust, while the electrode width has the least influence. Accordingly, the design of such motors can be guided.
李华峰, 王伊凡. 静电电机理论研究与性能仿真分析[J]. 电工技术学报, 2021, 36(6): 1201-1209.
Li Huafeng, Wang Yifan. Theoretical Research and Performance Simulation of Electrostatic Motor. Transactions of China Electrotechnical Society, 2021, 36(6): 1201-1209.
[1] 王冰, 尤彩红, 王文襄. 微型及超微型压力传感器的开发[J]. 仪表技术与传感器, 2009(增刊1): 180-181. Wang Bing, You Caihong, Wang Wenxiang.Deve- lopment of micro and ultra-micro pressure sensors[J]. Instrument Technology and Sensors, 2009(S1): 180-181. [2] 齐臣杰, 刘理天, 谭智敏. 微电机和微动力MEMS[J]. 电子科技导报, 1999(12): 21-23. Qi Chenjie, Liu Litian, Tan Zhimin.Micro motor and micro power MEMS[J]. Electronic Technology, 1999(12): 21-23. [3] 唐苏亚. 非电磁原理微电机的应用前景展望[J]. 微电机, 2007, 35(2): 70-74. Tang Suya.Application prospect of non-electromagnetic micromotors[J]. Micromotors, 2007, 35(2): 70-74. [4] 姬相超, 赵希梅. 永磁直线同步电动机的自适应时滞控制[J]. 电工技术学报, 2020, 35(6): 1231-1238. Ji Xiangchao, Zhao Ximei.Adaptive time delay control of permanent magnet linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1231-1238. [5] 凌志健, 赵文祥, 吉敬华. 高推力永磁直线作动器及其关键技术综述[J]. 电工技术学报, 2020, 35(5): 1022-1035. Ling Zhijian, Zhao Wenxiang, Ji Jinghua.Overview of high force density permanent magnet linear actuator and its key technology[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1022-1035. [6] 张博, 齐蓉, 林辉. 激光切割永磁直线伺服系统的反演滑模控制[J]. 电工技术学报, 2018, 33(3): 642-651. Zhang Bo, Qi Rong, Lin Hui.Back-stepping sliding mode control of laser cutting permanent magnet linear servo control system[J]. Transactions of China Electrotechnical Society, 2018, 33(3): 642-651. [7] 武志涛, 杨永辉. 一种永磁直线电机驱动X-Y平台精密轮廓跟踪控制策略[J]. 电工技术学报, 2018, 33(17): 4037-4043. Wu Zhitao, Yang Yonghui.A precise contour tracking control method for X-Y table driven by permanent magnet linear motors[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 4037-4043. [8] 孙宜标, 仲原, 刘春芳. 基于LMI的直线伺服滑模位移跟踪控制[J]. 电工技术学报, 2019, 34(1): 33-40. Sun Yibiao, Zhong Yuan, Liu Chunfang.LMI-based sliding mode displacement tracking control for per- manent magnet linear synchronous motor[J]. Transa- ctions of China Electrotechnical Society, 2019, 34(1): 33-40. [9] Niino T, Higuchi T, Egawa S.Dual excitation multiphase electrostatic drive[C]//Proceedings of the Industry Applications Society Annual Meeting, Orlando, FL, USA, 1995: 1318-1325. [10] 赵正平. 典型MEMS和可穿戴传感技术的新发展[J]. 微纳电子技术, 2015, 52(1): 1-13. Zhao Zhengping.New developments in typical MEMS and wearable sensor technology[J]. Micro- nano Electronics, 2015, 52(1): 1-13. [11] 王欣利, 程树康. 静电电动机及其研究发展状况[J]. 微特电机, 2001, 29(6): 12-15. Wang Xinli, Cheng Shukang.Electrostatic motor and its development[J]. Micro Motor, 2001, 29(6): 12-15. [12] Yamamoto A, Niino T, Higuchi T.Modeling and identification of an electrostatic motor[J]. Precision Engineering, 2006, 30(1): 104-113. [13] Bahoura, Mohammed.FPGA implementation of high- speed neural network for power amplifier behavioral modeling[J]. Analog Integrated Circuits & Signal Processing, 2014, 79(3): 507-527. [14] Kimura F, Yamamoto A, Higuchi T.FPGA imple- mentation of a signal synthesizer for driving a high- power electrostatic motor[C]//IEEE International Symposium on Industrial Electronics, 2011, DOI: 10.1109/ISIE.2011.5984345. [15] 谢宝昌. 电磁能量[M]. 北京: 机械工业出版社, 2016.