Traction-System Research of High-Speed Maglev Based on Active Disturbance Rejection Control
Zhu Jinquan1,2, Ge Qiongxuan1, Sun Pengkun1,2, Wang Xiaoxin1, Zhang Bo1
1. Key Laboratory of Power Electronics and Electric Drive Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 2. University of Chinese Academy of Sciences Beijing 100049 China
Abstract:The dq current of the high-speed maglev is coupled in synchronous-frame, when working in the double feed mode, the current coupling is severe, which affects the stable operation of the maglev train. The traditional decoupling control strategy is sensitive to parameters, so this paper proposes a current decoupling strategy based on active disturbance rejection control (ADRC). This strategy considers the voltage error caused by current coupling and changes of inductance parameter as system disturbance, then observes disturbances through the extended state observer, and feeds forward the disturbance to compensate the influence of the disturbance on the system. Simulation and hardware-in-the-loop (HIL) experiments demonstrate that the strategy has strong robustness to parameters and it can achieve current decoupling, reduce the current fluctuation of the maglev train during the stator section changeover process, improve system dynamic performance.
朱进权, 葛琼璇, 孙鹏琨, 王晓新, 张波. 基于自抗扰的高速磁浮列车牵引控制策略[J]. 电工技术学报, 2020, 35(5): 1065-1074.
Zhu Jinquan, Ge Qiongxuan, Sun Pengkun, Wang Xiaoxin, Zhang Bo. Traction-System Research of High-Speed Maglev Based on Active Disturbance Rejection Control. Transactions of China Electrotechnical Society, 2020, 35(5): 1065-1074.
[1] 吴祥明. 磁浮列车[M]. 上海: 上海科学技术出版社, 2003. [2] 刘金鑫, 葛琼璇, 王晓新. 高速磁浮牵引控制系统半实物实验研究[J]. 电工技术学报, 2015, 30(14): 497-503. Liu Jinxin, Ge Qiongxuan, Wang Xiaoxin, et al.Hardware-in-loop research of traction-system for high-speed maglev[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 497-503. [3] 孙鹏琨, 葛琼璇, 王晓新, 等. 磁悬浮列车在双端供电模式下的无速度传感器控制[J]. 电工技术学报, 2018, 33(18): 4249-4256. Sun Pengkun, Ge Qiongxuan, Wang Xiaoxin, et al.Research on speed sensorless control of maglev train with double-end power supply[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 4249-4256. [4] 刘金鑫, 葛琼璇, 王晓新, 等. 双端供电模式下高速磁浮列车牵引控制策略研究[J]. 电工电能新技术, 2015, 34(6): 16-21. Liu Jinxin, Ge Qiongxuan, Wang Xiaoxin, et al.Research on control strategy of high-speed maglev train with double-end power supply[J]. Advanced Technology of Electrical Engineering and Energy, 2015, 34(6): 16-21. [5] 周华伟, 温旭辉, 赵峰, 等. 基于内模的永磁同步电机滑模电流解耦控制[J]. 中国电机工程学报, 2012, 32(15): 91-99. Zhou Huawei, Wen Xuhui, Zhao Feng, et al.Decoupled current control of permanent magnet synchronous motors drives with sliding mode control strategy based on internal model[J]. Proceedings of the CSEE, 2012, 32(15): 91-99. [6] 李春鹏, 贲洪奇, 刘博, 等. 采用扰动观测器的偏差解耦控制方法[J]. 中国电机工程学报, 2015, 35(22): 5859-5868. Li Chunpeng, Ben Hongqi, Liu Bo, et al.Deviation decouple control method based on disturbance observer[J]. Proceedings of the CSEE, 2015, 35(22): 5859-5868. [7] Briz F, Degner M W, Lorenz R D.Analysis and design of current regulators using complex vectors[J]. IEEE Transactions on Industry Applications, 2000, 36(3): 817-825. [8] Holtz J, Quan J, Pontt J, et al.Design of fast and robust current regulators for high-power drives based on complex state variables[J]. IEEE Transactions on Industry Applications, 2004, 40(5): 1388-1397. [9] Han J.From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906. [10] Li Jie, Ren Haipeng, Zhong Yanru.Robust speed control of induction motor drives using first-order auto-disturbance rejection controllers[J]. IEEE Transactions on Industry Applications, 2015, 51(1): 712-720. [11] 刘春强, 骆光照, 涂文聪, 等. 基于自抗扰控制的双环伺服系统[J]. 中国电机工程学报, 2017, 37(23): 7032-7039. Liu Chunqiang, Luo Guangzhao, Tu Wencong, et al.Servo systems with double closed-loops based on active disturbance rejection controllers[J]. Proceedings of the CSEE, 2017, 37(23): 7032-7039. [12] 左月飞, 李明辉, 张捷, 等. 控制增益对永磁同步电动机自抗扰控制性能的影响[J]. 电工技术学报, 2016, 31(3): 58-65. Zuo Yuefei, Li Minghui, Zhang Jie, et al.Influence of control gain on active disturbance rejection controller for PSSM[J]. Transactions of China Electrotechnical Society, 2016, 31(3): 58-65. [13] 曾岳南, 曾祥彩, 周斌. 永磁同步电机传动系统电流环非线性自抗扰控制器的设计与稳定性分析[J]. 电工技术学报, 2017, 32(17): 135-143. Zeng Yuenan, Zeng Xiangcai, Zhou Bin, et al.Nonlinear active disturbance rejection controller design for current loop of PMSM drive system and its stability analysis[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 135-143. [14] 周凯, 孙彦成, 王旭东, 等.永磁同步电机的自抗扰控制调速策略[J].电机与控制学报, 2018, 22(2): 57-63. Zhou Kai, Sun Yancheng, Wang Xudong, et al.Active disturbance rejection control of PMSM speed control system[J]. Electric Machines and Control, 2018, 22(2): 57-63. [15] 王娟. 磁悬浮列车用长定子直线同步电机特性研究与故障分析[D]. 北京: 中国科学院电工研究所, 2004. [16] 韩京清. 自抗扰控制技术:估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008. [17] Gao Z.Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the 2003 IEEE American Control Conference, Denver, 2003, 6: 4989-4996.