Traction Control Strategy of High-Speed Maglev Considering the Influence of Suspension System
Zhu Jinquan1,2, Ge Qiongxuan1, Zhang Bo1, Sun Pengkun1,2, Wang Xiaoxin1
1. Key Laboratory of Power Electronics and Electric Drive Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 2. University of Chinese Academy of Sciences Beijing 100049 China
Abstract:The electromagnetic suspension (EMS) type high-speed maglev vehicleis driven by the long-stator linear synchronous motor. The excitation magnetic poles of motor areal so the electromagnets of suspension system, thus there is a serious nonlinear coupling relationship between the traction and levitation force of vehicle. The adjustment of the suspension system during operation will affect the traction system, which leads to traction force fluctuations. In this paper, a mathematical model of linear synchronous motor considering the influence of the suspension system is established. Aiming at the problem of traction fluctuations, a control strategy based on flux observation is proposed, which uses the extended electromotive force (EEMF) method to observe the flux. By applying the flux parameter to the speed loop and current loop, the q-axis current can be adjusted online to suppress the low-frequency traction fluctuation caused by the suspension system. However, the performance of this strategy is limited when the flux observation error exists at low speed region. Accordingly, a composite control strategy combining active disturbance rejection and flux observation algorithm is proposed, which compensates the flux observation error and other disturbances through the extend state observer (ESO). The results of hardware-in-the-loop (HIL) experiments show that the control strategy effectively suppresses the traction fluctuation caused by the influence of the suspension system, and improves the anti-load disturbance ability and dynamic performance.
朱进权, 葛琼璇, 张波, 孙鹏琨, 王晓新. 考虑悬浮系统影响的高速磁悬浮列车牵引控制策略[J]. 电工技术学报, 2022, 37(12): 3087-3096.
Zhu Jinquan, Ge Qiongxuan, Zhang Bo, Sun Pengkun, Wang Xiaoxin. Traction Control Strategy of High-Speed Maglev Considering the Influence of Suspension System. Transactions of China Electrotechnical Society, 2022, 37(12): 3087-3096.
[1] Hellinger R, Mnich P.Linear motor-powered transpor-tation: history, present status, and future outlook[J]. Proceedings of the IEEE, 2009, 97(11): 1892-1900. [2] 章九鼎, 卢琴芬. 长定子直线同步电机齿槽效应的计算与影响[J]. 电工技术学报, 2021, 36(5): 964-972. Zhang Jiuding, Lu Qinfen.Calculation and influences of cogging effects in long-stator linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 964-972. [3] 饶健. 高速磁悬浮列车的牵引力与悬浮力的耦合特性分析[D]. 北京: 中国科学院电工研究所, 2018. [4] 吕刚. 直线电机在轨道交通中的应用与关键技术综述[J]. 中国电机工程学报, 2020, 40(17): 5665-5675. Lü Gang.Review of the application and key tech-nology in the linear motor for the rail transit[J]. Proceedings of the CSEE, 2020, 40(17): 5665-5675. [5] 孙鹏琨, 葛琼璇, 王晓新, 等. 基于降阶观测器的高速磁浮列车无速度传感器控制算法[J]. 中国电机工程学报, 2020, 40(4): 1302-1309. Sun Pengkun, Ge Qiongxuan, Wang Xiaoxin, et al.Sensorless control strategy of high-speed maglev based on reduced order observer[J]. Proceedings of the CSEE, 2020, 40(4): 1302-1309. [6] 朱进权, 葛琼璇, 孙鹏琨, 等. 基于自抗扰的高速磁浮列车牵引控制策略[J]. 电工技术学报, 2020, 35(5): 1065-1074. Zhu Jinquan, Ge Qiongxuan, Sun Pengkun, et al.Traction-system research of high-speed maglev based on active disturbance rejection control[J]. Transa-ctions of China Electrotechnical Society, 2020, 35(5): 1065-1074. [7] Lu Ganyun, Chong Haozhong, He Weiguo, et al.Harmonic analysis of the PWM inverter fed LSM drive system in the TRANSRAPID Shanghai[C]//2003 Sixth International Conference on Advances in Power System Control, Operation and Management, Shanghai, China, 2003, 2: 547-557. [8] Sun Yougang, Qiang Haiyan, Xu Junqi, et al.Internet of things-based online condition monitor and improved adaptive fuzzy control for a medium-low-speed maglev train system[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2629-2639. [9] Chen Chen, Xu Junqi, Ji Wen, et al.Sliding mode robust adaptive control of maglev vehicle’s nonlinear suspension system based on flexible track: design and experiment[J]. IEEE Access, 2019, 7: 41874-41884. [10] 陈琛, 徐俊起, 倪菲, 等. 基于人工智能负载估计系统的磁浮列车垂向振动主动控制[J]. 同济大学学报(自然科学版), 2020, 48(9): 1344-1352. Chen Chen, Xu Junqi, Ni Fei, et al.Active control of vertical vibration for maglev train based on artificial intelligence load estimation system[J]. Journal of Tongji University (Natural Science), 2020, 48(9): 1344-1352. [11] Wai Rong-Jong, Lee Jeng-Dao.Robust levitation control for linear maglev rail system using fuzzy neural network[J]. IEEE Transactions on Control Systems Technology, 2009, 17(1): 4-14. [12] 徐俊起, 林国斌, 陈琛, 等. 负载扰动下磁浮车辆多点悬浮建模与控制[J]. 同济大学学报(自然科学版), 2020, 48(9): 1353-1363. Xu Junqi, Lin Guobin, Chen Chen, et al.Modeling and control of multi-point levitation of maglev vehicle under loading disturbance[J]. Journal of Tongji University (Natural Science), 2020, 48(9): 1353-1363. [13] 余佩倡, 李杰, 周丹峰, 等. 磁浮轨道不平顺对悬浮系统影响的抑制方法[J]. 国防科技大学学报, 2016, 38(4): 191-198. Yu Peichang,Li Jie,Zhou Danfeng, et al.Method for suppressing influence of track irregularity to maglev suspension system[J]. Journal of National University of Defense Technology, 2016, 38(4): 191-198. [14] 丁叁叁, 姚拴宝, 陈大伟. 高速磁浮列车气动升力特性[J]. 机械工程学报, 2020, 56(8): 228-234. Ding Sansan, Yao Shuanbao, Chen Dawei.Aerodyna-mic lift force of high-speed maglev train[J]. Journal of Mechanical Engineering, 2020, 56(8): 228-234. [15] Rao Jian, Wang Ke.Study on dynamic coupling characteristics of thrust and levitation force of long stator linear synchronous motor for maglev train[C]//2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, 2017: 1-4. [16] Lu Bing, Tan Xiaodong, Li Qing, et al.The analysis of excitation current changes in long stator linear synchronous motor of maglev[C]//2014 Prognostics and System Health Management Conference (PHM-2014 Hunan), Zhang Jiajie, China, 2014: 410-413. [17] Wang Boyu, Wang Ke.A novel propulsion control scheme of long stator linear synchronous motor for maglev vehicle considering the influence of suspen-sion system[C]//2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Korea, 2018: 1481-1485. [18] Sun Yougang, Xu Junqi, Qiang Haiyan, et al.Adaptive neural-fuzzy robust position control scheme for maglev train systems with experimental veri-fication[J]. IEEE Transactions on Industrial Elec-tronics, 2019, 66(11): 8589-8599. [19] 孙鹏琨, 葛琼璇, 王晓新, 等. 磁悬浮列车在双端供电模式下的无速度传感器控制[J]. 电工技术学报, 2018, 33(18): 4249-4256. Sun Pengkun, Ge Qiongxuan, Wang Xiaoxin, et al.Research on speed sensorless control of maglev train with double-end power supply[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 4249-4256. [20] 刘金鑫, 葛琼璇, 王晓新. 高速磁浮牵引控制系统半实物实验研究[J]. 电工技术学报, 2015, 30(14): 497-503. Liu Jinxin, Ge Qiongxuan, Wang Xiaoxin, et al.Hardware-in-loop research of traction-system for high-speed maglev[J]. Transactions of China Electro-technical Society, 2015, 30(14): 497-503. [21] Han Jinqin.From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Elec-tronics, 2009, 56(3): 900-906. [22] 孙鹏琨, 葛琼璇, 王晓新, 等. 基于硬件在环实时仿真平台的高速磁悬浮列车牵引控制策略[J]. 电工技术学报, 2020, 35(16): 3426-3435. Sun Pengkun, Ge Qiongxuan, Wang Xiaoxin, et al.Traction control strategy of high-speed maglev train based on hardware-in-the-loop real-time simulation platform[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3426-3435.