An Adaptive Impedance Matching Method Based on Radial Basis Function Neural Network in Multi-Load Wireless Power Transfer Systems
Wu Yuebao1, Zhao Jinbin1, Zhang Shaoteng1, Zhang Junwei1, Wang Xueliang2
1. College of Electrical Engineering Shanghai University of Electric Power Shanghai 200082 China; 2. Shanghai Guangwei Meixian Power Source and Electric Appliance Co. Ltd Shanghai 201100 China
Abstract:With the development of wireless power transfer (WPT) technology, more and more attention has been paid to supplying electricity to multiple loads simultaneously. In a multi-load WPT system, the cross coupling between the receiving coils will detune the system, resulting in a decrease of transmission efficiency at the resonant frequency. This paper firstly analyzes the influence of cross coupling on transmission efficiency, and proposes a "T" type impedance matching network based on RBF neural network. The proposed method adjusts the capacitance in the matching network in real time according to different loads, realizing the adaptive matching of system and load. Finally, an experimental setup was built for the proposed method, and the results show that when the cross coupling is the greatest, the system transmission efficiency increased from 34% to 78%.
吴月宝, 赵晋斌, 张少腾, 张俊伟, 汪学良. 基于径向基神经网络的多负载无线电能传输系统自适应阻抗匹配方法[J]. 电工技术学报, 2021, 36(19): 3969-3977.
Wu Yuebao, Zhao Jinbin, Zhang Shaoteng, Zhang Junwei, Wang Xueliang. An Adaptive Impedance Matching Method Based on Radial Basis Function Neural Network in Multi-Load Wireless Power Transfer Systems. Transactions of China Electrotechnical Society, 2021, 36(19): 3969-3977.
[1] 张献, 白雪宁, 沙琳, 等. 电动汽车无线充电系统不同结构线圈间互操作性评价方法研究[J]. 电工技术学报, 2020, 35(19): 4150-4160. Zhang Xian, Bai Xuening, Sha Lin, et al.Research on interoperability evaluation method of different coils in wireless charging system of electric vehicles[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4150-4160. [2] 吴理豪, 张波. 电动汽车静态无线充电技术研究综述(上篇)[J]. 电工技术学报, 2020, 35(6):1153-1165. Wu Lihao, Zhang Bo.Overview of static wireless charging technology for electric vehicles: part Ⅰ[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1153-1165. [3] 张献, 王杰, 杨庆新, 等. 电动汽车动态无线供电系统电能耦合机构与切换控制研究[J]. 电工技术学报, 2019, 34(15): 3093-3101. Zhang Xian, Wang Jie, Wei Bin, et al.The power coupling mechanism and switching control for dynamic wireless power supply system of electric vehicle[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3093-3101. [4] Van S D, Ngo H Q, Cotton S L.Wireless powered wearables using distributed massive MIMO[J]. IEEE Transactions on Communications, 2020, 68(4): 2156-72. [5] 赵志勇, 杨中平, 林飞, 等. 基于停车误差规律的有轨电车无线电能传输系统线圈优化设计[J]. 中国电机工程学报, 2017, 37(增刊1): 196-203. Zhao Zhiyong, Yang Zhongping, Lin Fei, et al.Coil optimization of wireless power transfer system applied in trams based on parking error law[J]. Proceedings of the CSEE, 2017, 37(S1): 196-203. [6] Kim J H, Lee B, Lee J, et al.Development of 1-MW inductive power transfer system for a high-speed train[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6242-6250. [7] Li Xing, Tsui C, Ki W.A 13.56 MHz wireless power transfer system with reconfigurable resonant regulating rectifier and wireless power control for implantable medical devices[J]. IEEE Journal of Solid-State Circuits, 2015, 50(4): 978-989. [8] Fu Minfan, Zhang Tong, Zhu Xinen, et al.Compensation of cross coupling in multiple-receiver wireless power transfer systems[J]. IEEE Transactions on Industrial Informatics, 2016, 12(2): 474-482. [9] 夏晨阳, 庄裕海, 邵祥, 等. 新型多负载变拓扑感应耦合电能传输系统[J]. 中国电机工程学报, 2015, 35(4): 953-960. Xia Chenyang, Zhuang Yuhai, Shao Xiang, et al.A novel inductively coupled power transfer system for multi-load with variable topology[J]. Proceedings of the CSEE, 2015, 35(4): 953-960. [10] 李炜昕, 张合, 李长生, 等. 磁耦合共振单发双收系统传输特性分析[J]. 电工技术学报, 2014, 29(2): 191-196. Li Weixin, Zhang He, Li Changsheng, et al.Analysis of transmission characteristics of single-emission and double-receiving system based on magnetic resonant coupling[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 191-196. [11] 罗成鑫, 丘东元, 张波, 等. 多负载无线电能传输系统[J]. 电工技术学报, 2020, 35(12): 2499-2516. Luo Chengxin, Qiu Dongyuan, Zhang Bo, et al.Wireless power transfer system for multiple loads[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2499-2516. [12] Fu Minfan, Zhang Tong, Ma Chengbin, et al.Efficiency and optimal loads analysis for multiple-receiver wireless power transfer systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(3): 801-812. [13] Beh T C, Kato M, Imura T, et al.Automated impedance matching system for robust wireless power transfer via magnetic resonance coupling[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9): 3689-3698. [14] Cheng Chenwen, Zhou Zhe, Li Weiguo, et al.A multi-load wireless power transfer system with series-parallel-series compensation[J]. IEEE Transactions on Power Electronics, 2019, 34(8): 7126-7130. [15] Ahn D, Hong S.Effect of coupling between multiple transmitters or multiple receivers on wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2013, 60(7): 2602-2613. [16] Kim J, Kim D, Park Y.Analysis of capacitive impedance matching networks for simultaneous wireless power transfer to multiple devices[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 2807-2813. [17] Jeong S, Lin Tonghong, Tentzeris M M.A real-time range-adaptive impedance matching utilizing a machine learning strategy based on neural networks for wireless power transfer systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(12): 5340-5347. [18] Li Yang, Dong Weihao, Yang Qingxin, et al.An automatic impedance matching method based on the feedforward-backpropagation neural network for a WPT system[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3963-3972.