Influence of the Roughness on Surface Flashover of Polymer Materials in Vacuum
Hu Duo1,2, Ren Chengyan1,2, Kong Fei1, Yan Ping1,2, Shao Tao1,2
1. Key Laboratory of Power Electronics and Electric Drive Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 2. University of Chinese Academy of Sciences Beijing 100049 China
Abstract:As an important factor of the surface state, the surface roughness is closely related to vacuum flashover. In order to investigate the influence of surface roughness on flashover characteristic of polymer materials and its influence mechanism, the polytetrafluoroethylene (PTFE), polymethylmethacrylate (PMMA) and polyamide 6 (PA6) samples with different surface roughness prepared with different meshes of sandpapers were used. The key surface parameters of the samples were measured, such as the morphology, surface potential, surface trap parameters, and the secondary electron emission yield (SEY). The flashover experiments of different roughness samples were carried out in vacuum. The analysis of the sample surface parameters before and after grinding shows that the influence of surface roughness on the surface potential and trap parameters is related to the roughness range and material type. Besides, the surface roughness has a certain influence on the SEY. Increasing the roughness of materials within a certain range can improve the flashover voltage in vacuum, which is directly related to the surface charge dissipation, trap level and SEY characteristics of insulating materials. The experimental results can provide a reference for analyzing the influence of surface factors on the surface insulation characteristics and material modification.
胡多, 任成燕, 孔飞, 严萍, 邵涛. 表面粗糙度对聚合物材料真空沿面闪络特性的影响[J]. 电工技术学报, 2019, 34(16): 3512-3521.
Hu Duo, Ren Chengyan, Kong Fei, Yan Ping, Shao Tao. Influence of the Roughness on Surface Flashover of Polymer Materials in Vacuum. Transactions of China Electrotechnical Society, 2019, 34(16): 3512-3521.
[1] 李盛涛, 聂永杰, 闵道敏, 等. 固体电介质真空沿面闪络研究进展[J]. 电工技术学报, 2017, 32(8): 1-9. Li Shengtao, Nie Yongjie, Min Daomin, et al.Research process on vacuum surface flashover of solid dielectrics[J]. Transactions of China Electro- technical Society, 2017, 32(8): 1-9. [2] Smith J D, Hatfield L L.The effects of surface roughness on the surface flashover voltage of lucite, lexan, and celcon[C]//IEEE International Pulsed Power Conference, Monterey, CA, USA, 1989: 824-827. [3] Yamamoto O, Takuma T, Fukuda M, et al.Improving withstand voltage by roughening the surface of an insulating spacer used in vacuum[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 2003, 10(4): 550-556. [4] Ding Lijiang, Tu Youping, Li Chengrong, et al.Experimental investigation of influence of surface roughness on flashover performance of ceramics in vacuum[C]//IEEE International Symposium on Electrical Insulation, Rome, Italy, 2004: 261-264. [5] Hosono T, Kato K, Morita A, et al.Surface charges on alumina in vacuum with varying surface roughness and electric field distribution[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(3): 627-633. [6] 于开坤, 张冠军, 穆海宝, 等. 表面处理对可加工陶瓷真空沿面闪络特性的影响[J]. 电工技术学报, 2012, 27(5): 115-120. Yu Kaikun, Zhang Guanjun, Mu Haibao, et al.Effect of different surface treatment on the surface flashover characteristics of machinable ceramic in vacuum[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 115-120. [7] 郎艳, 王艺博, 苏国强, 等. 表面粗糙度对有机玻璃材料真空沿面闪络特性的影响[J]. 高电压技术, 2015, 41(2): 474-478. Lang Yan, Wang Yibo, Su Guoqiang, et al.Influence of surface roughness on vacuum flashover characteristics of PMMA[J]. High Voltage Engineering, 2015, 41(2): 474-478. [8] Xue Jianyi, Wang Han, Chen Junhong, et al. Effects of surface roughness on surface charge accumulation characteristics and surface flashover performance of alumina-filled epoxy resin spacers[J]. Journal of Applied Physics, 2018, 124(8): 083302.1-11. [9] Huo Yankun, Liu Wenyuan, Ke Changfeng, et al. Sharp improvement of flashover strength from composite micro-textured surfaces[J]. Journal of Applied Physics, 2017, 122(11): 115105.1-6. [10] 林生军, 黄印, 闵道敏, 等. 电子束辐照对环氧微米复合介质表面陷阱特性和表面电导的影响[J]. 绝缘材料, 2016, 49(12): 55-61. Lin Shengjun, Huang Yin, Min Daomin, et al.Influence of electron beam irradiation on surface trap properties and surface conduction of epoxy resin microcomposites[J]. Insulating Materials, 2016, 49(12): 55-61. [11] 王威望, 李盛涛, 刘文凤. 聚合物纳米复合电介质的击穿性能[J]. 电工技术学报, 2017, 32(16): 25-36. Wang Weiwang, Li Shengtao, Liu Wenfeng.Dielectric breakdown of polymer nanocomposites[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 25-36. [12] 谢庆, 付可欣, 陆路, 等. 环氧树脂真空沿面闪络后表面形貌的 AFM 分析及分形特征提取[J]. 电工技术学报, 2017, 32(16): 245-255. Xie Qing, Fu Kexin, Lu Lu, et al.AFM analysis and fractal characteristics extraction of the surface morphology of epoxy resin after vacuum flashover[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 245-255. [13] 柯昌凤, 刘文元, 段荔, 等. 表面改性对绝缘子真空沿面闪络特性的影响[J]. 强激光与粒子束, 2014, 26(6): 280-284. Ke Changfeng, Liu Wenyuan, Duan Li, et al.Influence of surface modification on vacuum flashover performance of insulators[J]. High Power Laser and Particle Beams, 2014, 26(6): 280-284. [14] Shao Tao, Yang Wenjin, Zhang Cheng, et al. Enhanced surface flashover strength in vacuum of polymethylmethacrylate by surface modification using atmospheric-pressure dielectric barrier discharge[J]. Applied Physics Letters, 2014, 105(7): 071607(1-5). [15] 戴栋, 宁文军, 邵涛, 等. 大气压低温等离子体的研究现状与发展趋势[J].电工技术学报, 2017, 32(20): 1-9. Dai Dong, Ning Wenjun, Shao Tao, et al.A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9. [16] 于开坤, 张冠军, 田杰, 等. 不同掺杂对可加工陶瓷二次电子发射及沿面闪络特性的影响[J]. 电工技术学报, 2011, 26(1): 23-28. Yu Kaikun, Zhang Guanjun, Tian Jie, et al.Effect of different dopant in machinable ceramic on its secondary electron emission and surface flashover characteristics in vacuum[J]. Transactions of China Electrotechnical Society, 2011, 26(1): 23-28. [17] Zhai Peng, Ma Xinpei, Zheng Nan, et al.Surface flashover performance of ion-exchanged machinable glass ceramics material in vacuum[J]. Advanced Materials Research, 2012, 77(12): 71-73. [18] Chang Chao, Huang H J, Liu G Z, et al. The effect of grooved surface on dielectric multipactor[J]. Journal of Applied Physics, 2009, 105(12): 123305(1-7). [19] 刘孟佳, 周福升, 陈铮铮, 等. 采用等温表面电位衰减法表征LDPE与HDPE内陷阱的分布特性[J]. 中国电机工程学报, 2016, 36(1): 285-291. Liu Mengjia, Zhou Fusheng, Chen Zhengzheng, et al.Characterizing trap distribution in LDPE and HDPE based on isothermal surface potential decay measure- ment[J]. Proceeding of the CSEE, 2016, 36(1): 285-291. [20] 高宇, 李莹, 崔劲达, 等. 伽玛线辐射对环氧树脂表面陷阱分布的影响[J]. 电工技术学报, 2012, 27(12): 264-269. Gao Yu, Li Ying, Cui Jinda, et al.Effect of gamma- ray irradiation on surface trap distribution of epoxy resin[J]. Transactions of China Electrotechnical Society, 2012, 27(12): 264-269. [21] 马翊洋, 章程, 孔飞, 等. 次大气压介质阻挡放电处理环氧树脂对表面电荷消散的影响及老化特性[J]. 电工技术学报, 2018, 33(22): 5168-5177. Ma Yiyang, Zhang Cheng, Kong Fei, et al.Surface treatment of epoxy resin by sub-atmospheric-pressure dielectric barrier discharge: the effect on surface charge dissipation and aging characteristics[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5168-5177. [22] 张冠军. 真空中固体绝缘材料沿面闪络的起始机理与发展过程[D]. 西安: 西安交通大学, 2001. [23] Li Shengtao.Charge dynamics: linking traps to insulation failure[C]//IEEE International Conference on Properties and Applications of Dielectric Materials, Sydney, NSW, Australia, 2015: 1-14. [24] Meunier M, Quirke N, Aslanides A.Molecular modeling of electron traps in polymer insulators: chemical defects and impurities[J]. Journal of Chemical Physics, 2001, 115(6): 2876-2881. [25] 翁明, 胡天存, 曹猛, 等. 电子入射角度对聚酰亚胺二次电子发射系数的影响[J]. 物理学报, 2015, 64(15): 157901(1-7). Weng Ming, Hu Tiancun, Cao Meng, et al. Effects of electron incident angle on the secondary electron yield for polyimide[J]. Acta Physica Sinica, 2015, 64(15): 157901.1-7. [26] Kato K, Kato H, Ishida T, et al.Influence of surface charges on impulse flashover characteristics of alumina dielectrics in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(6): 1710-1716.