Streamer Characteristics of TiO2 Nanofluid/Pressboard System with Different Nanoparticle Size
Wang Lei1, 2, Niu Mingkang1, Ying Yupeng1, Lü Yuzhen3, Li Chengrong1
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. Inner Mongolia Power Research Institute Hohhot 010020 China; 3. School of Energy Power and Mechanical Engineering North China Electric Power University Beijing 102206 China
Abstract:To further understand the influence mechanism of nanoparticles on oil-paper insulation in transformer, this paper presents experimental research on streamer propagation of 5 nm, 10 nm, 15 nm spherical TiO2 nanofluids-impregnated pressboards (NPs) and pure oil-impregnated pressboards (OPs) under positive standard lightning impulse voltage. The streamer propagation images at the interface of all samples were shot from the front and side, based on the fill light-exposure technique and the shadowgraph technique respectively. It is shown that the three types of TiO2 nanoparticles can inhibit the velocity of positive streamers and accelerate the dissipation progress. The interface streamer branches of the NPs are more clustered and the trends of the streamer heads are more inclined to the oil, attributed to the nanoparticles. The modification effect is better with the smaller size of the nanoparticles. The steamer stopping length of 5 nm NPs is 32.6% lower than that of OPs. It is because a large number of shallow traps will be introduced after the addition of TiO2 nanoparticles. On the one hand, the shallow traps adsorb the high-speed electrons in plasma to form low-speed negative ions. Therefore, the probability of charge recombination at the streamer head is increased. On the other hand, the spacing between shallow traps becomes smaller, forming shallow traps band area. The charges are transported in shallow traps band, increasing the charge mobility and inhibiting the accumulation of space charge. These two effects make the electric field decrease at the streamer head. The specific surface area of nanoparticles increases with the decreasing size, result in more shallow traps and better modification effects.
王磊, 牛铭康, 应宇鹏, 吕玉珍, 李成榕. TiO2纳米粒子粒径对油纸绝缘流注特性的影响[J]. 电工技术学报, 2019, 34(7): 1544-1551.
Wang Lei, Niu Mingkang, Ying Yupeng, Lü Yuzhen, Li Chengrong. Streamer Characteristics of TiO2 Nanofluid/Pressboard System with Different Nanoparticle Size. Transactions of China Electrotechnical Society, 2019, 34(7): 1544-1551.
[1] 鲁杨飞, 李庆民, 刘涛, 等. 高频电压下表面电荷分布对沿面放电发展过程的影响[J].电工技术学报, 2018, 33(13): 3059-3070. Lu Yangfei, Li Qingmin, Liu Tao, et al.Effect of surface charge on the surface discharge evolution for polyimide under high frequency voltage[J]. Transactions of China Electrotechnical Society, 2018, 33(13): 3059-3070. [2] 周远翔, 孙清华, 李光范, 等. 空间电荷对油纸绝缘体击穿强度和沿面闪络的影响[J]. 电网技术, 2009, 33(15): 76-79. Zhou Yuanxiang, Sun Qinghua, Li Guangfan, et al.Effects of space charge on breakdown strength and creeping flashover in oil-paper insulation[J]. Power System Technology, 2009, 33(15): 76-79. [3] 孟晓波, 梅红伟, 陈昌龙, 等. 绝缘子表面流注发展特性受伞裙形状的影响[J]. 电工技术学报, 2013, 28(11): 278-285. Meng Xiaobo, Mei Hongwei, Chen Changlong, et al.Influence of curved profiles on characteristics of streamer propagation along the insulator surfaces[J]. Transactions of China Electrotechnical Society, 2013, 28(11): 278-285. [4] George J, Markus Z, Francis M, et al.Effects of nanoparticle charging on streamer development in transformer oil-based nanofluids[J]. Journal of Applied Physics, 2010, 107(1): 14-31. [5] 廖瑞金, 何利华, 吕彦冬, 等. 纳米Al2O3掺杂对油纸绝缘热老化特性的影响[J]. 电工技术学报, 2017, 32(15): 207-215. Liao Ruijin, He Lihua, Lü Yandong, et al.Influence of nano-Al2O3 on properties of oil-paper insulation during thermal aging process[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 207-215. [6] 王威望, 李盛涛, 刘文凤. 聚合物纳米复合电介质的击穿性能[J]. 电工技术学报, 2017, 32(16): 25-36. Wang Weiwang, Li Shengtao, Liu Wenfeng.Dielectric breakdown of polymer nanocomposites[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 25-36. [7] 王琪, 周游, 陈鑫, 等. TiO2纳米粒子对油浸纸板沿面放电的影响[J]. 绝缘材料, 2015, 48(8): 36-40. Wang Qi, Zhou You, Chen Xin, et al.Effect of TiO2 nanoparticles on surface discharge characteristics of transformer oil impregnated pressboard[J]. Insulating Materials, 2015, 48(8): 36-40. [8] 施健, 司马文霞, 杨庆, 等. 纳米粒子对变压器油中流注发展过程影响的仿真分析[J]. 高电压技术, 2015, 41(2): 424-431. Shi Jian, Sima Wenxia, Yang Qing, et al.Simulation analysis of the effect of nanoparticles on streamer development in transformer oil[J]. High Voltage Engineering, 2015, 41(2): 424-431. [9] 施健. 操作冲击电压下纳米改性变压器油中空间电荷分布特性和流注放电研究[D]. 重庆: 重庆大学, 2014. [10] 周游. 雷电冲击电压下纳米粒子改变变压器油纸绝缘特性的机理[D]. 北京: 华北电力大学, 2015. [11] 马凯波. 纳米改性变压器油浸纸板沿面爬电性能的研究[D]. 北京: 华北电力大学, 2015. [12] 陈鑫. 纳米粒子类型和微观特性对变压器油纸绝缘的改性研究[D]. 北京: 华北电力大学, 2017. [13] Du Bin, Li Jian, Wang Feipeng, et al.Influence of monodisperse Fe3O4 nanoparticle size on electrical properties of vegetable oil-based nanofluids[J]. Journal of Nanomaterials, 2015, 2015: 1-9. [14] Lü Yuzhen, Zhou You, Li Chengrong, et al.Creeping discharge characteristics of nanofluid-impregnated pressboards under AC stress[J]. IEEE Transactions on Plasma Science, 2016, 44(11): 2589-2593. [15] Liu Jun, Zhou Lijun, Wu Guangning, et al.Dielectric frequency response of oil-paper composite insulation modified by nanoparticles[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2012, 19(2): 510-520. [16] Sitorus H B H, Beroual A, Setiabudy R, et al. Creeping discharges over pressboard immersed in jatropha curcas methyl ester and mineral oils[C]//2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials, Sydney, NSW, Australia, 2015: 152-155. [17] Rozga P.Influence of paper insulation on the prebreakdown phenomena in mineral oil under lightning impulse[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2011, 18(3): 720-727. [18] 谢庆, 付可欣, 陆路, 等. 环氧树脂真空沿面闪络后表面形貌的AFM分析及分形特征提取[J]. 电工技术学报, 2017, 32(16): 245-255. Xie Qing, Fu Kexin, Lu Lu, et al.AFM analysis and fractal characteristics extraction of the surface morphology of epoxy resin after vacuum flashover[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 245-255. [19] 张晓虹, 迟晓红, 高俊国, 等. 分形分析方法在电树枝结构研究中的应用[J]. 电工技术学报, 2013, 28(1): 14-20. Zhang Xiaohong, Chi Xiaohong, Gao Junguo, et al.Application of fractal analysis on researching shapes of electrical trees[J]. Transactions of China Electrotechnical Society, 2013, 28(1): 14-20. [20] 刘孟佳, 周福升, 陈铮铮, 等. 采用等温表面电位衰减法表征LDPE与HDPE内陷阱的分布特性[J]. 中国电机工程学报, 2016, 36(1): 285-291. Liu Mengjia, Zhou Fusheng, Chen Zhengzheng, et al.Characterizing trap distribution in ldpe and hdpe based on isothermal surface potential decay measurement[J]. Proceedings of the CSEE, 2016, 36(1): 285-291. [21] 林浩凡, 王瑞雪, 谢庆, 等. 等离子体射流快速改性促进表面电荷衰减[J]. 电工技术学报, 2017, 32(16): 256-264. Lin Haofan, Wang Ruixue, Xie Qing, et al.Rapid surface modification by plasma jet to promote surface charge decaying[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 256-264. [22] Li Shengtao, Zhu Yuanwei, Min Daomin, et al.Space charge modulated electrical breakdown[J]. Scientific Reports, 2016, 6: 32588. [23] Kao K C.New theory of electrical discharge and breakdown in low-mobility condensed insulators[J]. Journal of Applied Physics, 1984, 55(3): 752-755. [24] Lewis T J.Breakdown initiating mechanisms at electrode interfaces in liquids[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2003, 10(6): 948-955. [25] Zhou Yao, Hu Jun, Dang Bin, et al.Titanium oxide nanoparticle increases shallow traps to suppress space charge accumulation in polypropylene dielectrics[J]. RSC Advances, 2016, 6(54): 48720-48727. [26] Tanaka T.Interpretation of several key phenomena peculiar to nano dielectrics in terms of a multi-core model[C]//IEEE Conference on Electrical Insulation and Dielectric Phenomena, Kansas City, MO, USA, 2006: 298-301. [27] Tanaka T, Kozako M, Fuse N, et al.Proposal of a multi-core model for polymer nanocomposite dielectrics[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2005, 12(4): 669-681. [28] 缪金, 董明, 杨彦博, 等. 纳米改性变压器油电导率改进模型[J]. 西安交通大学学报, 2013, 47(2): 87-91. Miao Jin, Dong Ming, Yang Yanbo, et al.Modified electrical conductivity model for transformer oil-based nanofluids[J]. Journal of Xi’an Jiaotong University, 2013, 47(2): 87-91. [29] Primo V A, Garcia B, Albarracin R.Improvement of transformer liquid insulation using nanodielectric fluids: a review[J]. IEEE Electrical Insulation Magazine, 2018, 34(3): 13-26. [30] 杜岳凡. TiO2纳米粒子对变压器油绝缘和电荷输运特性的影响[D]. 北京: 华北电力大学, 2013. 通信作者:王磊男,1994年生,硕士研究生,研究方向为纳米材料对变压器油纸绝缘的改性.E-mail:1297558219@qq.com