Abstract:Cell electrofusion technology is usually performed by short-term high-voltage electrical pulses with a duration of microseconds to induce cell electroporation. However, exposure to high amplitude microsecond pulses can easily lead to excessive cell electroporation while promoting cell electrofusion, resulting in the death of the fused cells, thereby limiting the efficiency of cell fusion. To increase the rate of cell electrofusion, this paper proposes a method of synergistic induction of cell electrofusion by combining nanosecond and microsecond pulsed electric fields, based on the phenomenon of “super-electroporation” induced by nanosecond pulsed electric field. In this paper, SP2/0 mouse myeloma cells are used as the experimental object. The COMSOL software is used to analyze the distribution of transmembrane voltage and electroporation density on the cell membrane under the exposure of the composite pulse, and preliminary electrofusion experiments are performed to explore the mortality and fusion rate of the fusion method. The simulation results show that under the traditional microsecond pulse, the transmembrane voltage across the two poles of the membrane and the contact area both exceed the perforation threshold, and the significant perforation area exceeds 10%. Besides, under the action of the same dose of nano/microsecond composite pulse, the transmembrane voltage only reaches a higher value in the cell contact area, and the electroporation is also concentrated in this area. Experimental results also prove that this method can guarantee a lower mortality rate (10%) while achieving a higher cell fusion efficiency (75%), which provides new ideas for the further development of cell electrofusion technology.
李成祥, 李新皓, 柯强, 姚成, 姚陈果. 纳/微秒复合脉冲提高细胞电融合效率的仿真与实验研究[J]. 电工技术学报, 2022, 37(6): 1522-1532.
Li Chengxiang, Li Xinhao, Ke Qiang, Yao Cheng, Yao Chenguo. Simulation and Experimental Research on Improving the Efficiency of Cell Electrofusion by Nano-Microsecond Pulsed Electric Fields. Transactions of China Electrotechnical Society, 2022, 37(6): 1522-1532.
[1] Bajaj Y.Plant protoplasts and genetic engineering II[M]. Berlin: Springer-Verlag, 1989. [2] Mccluskey J T, Hamid M, Guo-Parke H, et al.Development and functional characterization of insulin-releasing human pancreatic beta cell lines produced by electrofusion[J]. Journal of Biological Chemistry, 2011, 286(25): 21982-21992. [3] Sretavan D W, Chang W, Hawkes E, et al.Microscale surgery on single axons[J]. Neurosurgery, 2005, 57(4): 635-646. [4] Avigan D, Rosenblatt J, Kufe D.Dendritic/tumor fusion cells as cancer vaccines[J]. Seminars in Oncology, 2012, 39(3): 287-295. [5] Trontelj K, Reberšek M, Kandušer M, et al.Optimi-zation of bulk cell electrofusion in vitro for pro-duction of human-mouse heterohybridoma cells[J]. Bioelectrochemistry, 2008, 74(1): 124-129. [6] Golestani R, Pourfathollah A A, Moazzeni S M.Cephalin as an efficient fusogen in hybridoma technology: can it replace poly ethylene glycol?[J]. Hybridoma, 2007, 26(5): 296-301. [7] Okada Y, Koseki I, Kim J, et al.Modification of cell membranes with viral envelopes during fusion of cells with HVJ (Sendai virus): I. Interaction between cell membranes and virus in the early stage[J]. Experimental Cell Research, 1975, 93(2): 368-378. [8] Zimmermann U, Neil G A.Electromanipulation of Cells[M]. New York: CRC Press, 1996. [9] Senda M, Takeda J, Abe S, et al.Induction of cell fusion of plant protoplasts by electrical stimulation[J]. Plant and Cell Physiology, 1979, 20(7): 1441-1443. [10] 谢廷栋, 汪和睦, 鲁玉瓦, 等. 鼠B淋巴细胞和骨髓瘤细胞的电融合[J]. 中国生物医学工程学报, 1989, 8(1): 25-31. Xie Tingdong, Wang Hemu, Lu Yuwa, et al.Elec-trical fusion of mouse B lymphocytes and myeloma cells[J]. Chinese Journal of Biomedical Engineering, 1989, 8(1): 25-31. [11] 纪其雄, 鲁玉瓦, 汪和睦. 运用高效率电融合技术建立抗-hCG杂交瘤细胞株[J]. 生物物理学报, 1993, 9(3): 507. Ji Qixiong, Lu Yuwa, Wang Hemu.A high-efficiency electrofusion technique was used to establish anti-hCG hybridoma cell line[J]. Acta Biophysica Sinica, 1993, 9(3): 507. [12] Usaj M, Flisar K, Miklavcic D, et al.Electrofusion of B16-F1 and CHO cells: the comparison of the pulse first and contact first protocols[J]. Bioelectro-chemistry, 2013, 89(2): 34-41. [13] Cardona-Costa J, García-Ximénez F, Espinós F J.Definition of fusion medium and electric parameters for efficient zygote electrofusion in the Pacific oyster (Crassostrea gigas)[J]. Theriogenology, 2010, 74(5): 828-834. [14] 李雁, 冯云, 孙贻娟, 等. 人卵母细胞与体细胞的电融合效率[J]. 上海交通大学学报(医学版), 2007, 27(7): 837-840. Li Yan, Feng Yun, Sun Yijuan, et al.Efficiency of electrofusion of human somatic cells with oocytes[J]. Journal of Shanghai Jiaotong University (Medical Science), 2007, 27(7): 837-840. [15] Hu Ning, Yang Jun, Joo S W, et al.Cell electrofusion in microfluidic devices: a review[J]. Sensors and Actuators B: Chemical, 2013, 178: 63-85. [16] Sugahara K, Morimoto Y, Takamoei S, et al.A dynamic microarray device for pairing and electro-fusion of giant unilamellar vesicles[J]. Sensors and Actuators B: Chemical, 2020, 311: 127922. [17] Kanduser M, Imsirovic M K, Usaj M.The effect of lipid antioxidant α-tocopherol on cell viability and electrofusion yield of B16-F1 cells in vitro[J]. The Journal of Membrane Biology, 2019, 252(1): 105-114. [18] Qu Pengxiang, Shen Chong, Du Yue, et al.Melatonin protects rabbit somatic cell nuclear transfer (SCNT) embryos from electrofusion damage[J]. Scientific Reports, 2020, 10(1): 1-9. [19] Rems L, Usaj M, Kanduser M, et al.Cell electro-fusion using nanosecond electric pulses[J]. Scientific Reports, 2013, 3(1): 1-10. [20] Stacey M W, Fox P, Buescher S, et al.Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival[J]. Bioelectrochemistry, 2011, 82(2): 131-134. [21] 刘红梅, 董守龙, 宁郡怡, 等. 纳秒脉冲高频透膜效应优先杀伤化疗抗性肿瘤细胞的仿真与实验研究[J]. 电工技术学报, 2019, 34(22): 4839-4848. Liu Hongmei, Dong Shoulong, Ning Junyi, et al.Simulation and experimental study on preferential killing of chemoresistance tumor cells induced by the high-frequency permeation effect of nanosecond pulse field[J]. Transactions of China Electrotechnical Society, 2019, 34(22): 4839-4848. [22] Hu Qingfang, Viswanadham S, Joshi R P, et al.Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse[J]. Physical Review E, 2005, 71(3): 31914. [23] Silve A, Leray I, Mir L M.Demonstration of cell membrane permeabilization to medium-sized mole-cules caused by a single 10ns electric pulse[J]. Bioelectrochemistry, 2012, 87(10): 260-264. [24] Saulis G, Saulė R.Size of the pores created by an electric pulse: microsecond vs millisecond pulses[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2012, 1818(12): 3032-3039. [25] Usaj M, Kanduser M.The systematic study of the electroporation and electrofusion of B16-F1 and CHO cells in isotonic and hypotonic buffer[J]. The Journal of Membrane Biology, 2012, 245(9): 583-590. [26] Pucihar G, Miklavcic D, Kotnik T.A time-dependent numerical model of transmembrane voltage indu-cement and electroporation of irregularly shaped cells[J]. IEEE Transactions on Biomedical Engin-eering, 2009, 56(5): 1491-1501. [27] Krassowska W, Filev P D.Modeling electroporation in a single cell[J]. Biophysical Journal, 2007, 92(2): 404-417. [28] De Bruin K A, Krassowska W. Modeling electro-poration in a single cell. I. Effects of field strength and rest potential[J]. Biophysical Journal, 1999, 77(3): 1213-1224. [29] Liu Linying, Mao Zheng, Zhang Jianhua, et al.The influence of vesicle shape and medium conductivity on possible electrofusion under a pulsed electric field[J]. PloS One, 2016, 11(7): e0158739. [30] Neu J C, Smith K C, Krassowska W.Electrical energy required to form large conducting pores[J]. Bioelectrochemistry, 2003, 60(1): 107-114. [31] Yao Chenguo, Liu Hongmei, Zhao Yajun, et al.Analysis of dynamic processes in single-cell electro-poration and their effects on parameter selection based on the finite-element model[J]. IEEE Transa-ctions on Plasma Science, 2017, 45(5): 889-900. [32] Li Chengxiang, Ke Qiang, Yao Cheng, et al.Com-parison of bipolar and unipolar pulses in cell elec-trofusion: simulation and experimental research[J]. IEEE Transactions on Biomedical Engineering, 2018, 66(5): 1353-1360. [33] Polevaya Y, Ermolina I, Schlesinger M, et al.Time domain dielectric spectroscopy study of human cells: II. Normal and malignant white blood cells[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1999, 1419(2): 257-271. [34] Garner A L, Chen G, Chen Nianyong, et al.Ultrashort electric pulse induced changes in cellular dielectric properties[J]. Biochemical and Biophysical Research Communications, 2007, 362(1): 139-144. [35] 姚陈果, 郑爽, 刘红梅, 等. 面向临床多针消融肿瘤的不可逆电穿孔量效关系模型[J]. 电工技术学报, 2020, 35(11): 2491-2498. Yao Chenguo, Zheng Shuang, Liu Hongmei, et al.Model of irreversible electroporation dose-effect relationship for clinical multi-needle ablation tumors[J]. Transactions of China Electrotechnical Society, 2020, 35(11): 2491-2498. [36] Kotnik T, Miklavčič D.Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields[J]. Bio-physical Journal, 2006, 90(2): 480-491. [37] 姚陈果, 刘红梅, 赵亚军, 等. 基于有限元分析的球形单细胞及不规则真实细胞电穿孔动态过程仿真[J]. 高电压技术, 2016, 42(8): 2479-2486. Yao Chenguo, Liu Hongmei, Zhao Yajun, et al.Simulation on the process of electroporation in spherical single-cell and irregularly shaped real cells based on finite elements analysis[J]. High Voltage Engineering, 2016, 42(8): 2479-2486. [38] 姚陈果, 吕彦鹏, 赵亚军, 等. 基于能量概率与微孔力模型的脉冲电场对细胞电穿孔动态过程的仿真分析[J]. 电工技术学报, 2016, 31(23): 141-149. Yao Chenguo, Lü Yanpeng, Zhao Yajun, et al.Simulation analysis on dynamic process of elec-troporation by the model based on energy probability and pore force in cell exposed to pulsed electric field[J]. Transactions of China Electrotechnical Society, 2016, 31(23): 141-149. [39] Pucihar G, Kotnik T, Teissié J, et al.Electro-permeabilization of dense cell suspensions[J]. European Biophysics Journal, 2007, 36(3): 173-185. [40] 米彦, 李盼, 刘权, 等. 纳秒脉冲电场联合多壁碳纳米管对皮肤癌细胞活性的剂量效应研究[J]. 电工技术学报, 2019, 34(22): 4849-4857. Mi Yan, Li Pan, Liu Quan, et al.Dose effect of the activity of skin cancer cells treated by nanosecond pulsed electric field combined with multi-walled carbon nanotubes[J]. Transactions of China Elec-trotechnical Society, 2019, 34(22): 4849-4857. [41] 米彦, 刘权, 李盼, 等. 低强度纳秒脉冲电场联合靶向金纳米棒对A375黑色素瘤细胞的杀伤效果研究[J]. 电工技术学报, 2020, 35(12): 2534-2544. Mi Yan, Liu Quan, Li Pan, et al.Study of killing effects of A375 melanoma cells treated by low intensity nanosecond pulsed electric fields combined with targeted gold nanorods[J]. Transactions of China Electrotechnical Society, 2019, 35(12): 2534-2544. [42] 姚陈果, 宁郡怡, 刘红梅, 等. 微/纳秒脉冲电场靶向不同尺寸肿瘤细胞内外膜电穿孔效应研究[J]. 电工技术学报, 2020, 35(1): 115-124. Yao Chenguo, Ning Junyi, Liu Hongmei, et al.Study of electroporation effect of different size tumor cells targeted by micro-nanosecond pulsed electric field[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 115-124.