Abstract:As the third generation insulating materials, polymer nanocomposites exhibit superior electrical performance. The breakdown is one of the key properties in polymer nanocomposites. Many researches have reported that the breakdown characteristics of nanocomposites are superior to the neat polymer and its micro-composites. This paper summarizes the breakdown performance of the first generation polymer nanocomposites, including the bulk breakdown and the surface flashover. The mechanisms of breakdown improvements in nanocomposites are also discussed. Based on the domestic and overseas research status as well as the relative research work in our group, the influencing mechanisms of free volume and charge transport on the breakdown in nanocomposites were proposed. The relationships between trap and breakdown strength or surface flashover voltage are elaborated. After that, it is pointed out that incorporating of nanofillers can tailor the bulk and surface charge transport parameters, and hence improve the bulk breakdown and the surface flashover performances. Finally, further development of the second generation nanocomposites in future was briefly introduced.
[1] Cao Y, Irwin P C, Younsi K. The future of nanodielectrics in the electrical power industry[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 797-807. [2] Li S T, Yin G L, Chen G, et al. Short-term breakdown and long-term failure in nanodielectrics: a review[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(5): 1523-1535. [3] Murakami Y, Nemoto M, Okuzumi S, et al. DC conduction and electrical breakdown of MgO/LDPE nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(1): 33-39. [4] 田付强, 杨春, 何丽娟, 等. 聚合物/无机纳米复合电介质介电性能及其机理最新研究进展[J]. 电工技术学报, 2011, 26(3): 1-12. Tian Fuqiang, Yang Chun, He Lijuan, et al. Recent research advancement in dielectric properties and the corresponding mechanism of polymer/inorganic nanocomposite[J]. Transactions of China Electro- technical Society, 2011, 26(3): 1-12. [5] Ma D, Siegel R W, Hong J I, et al. Influence of nanoparticle surfaces on the electrical breakdown strength of nanoparticle-filled low-density poly- ethylene[J]. Journal of Materials Research, 2004, 19(3): 857-863. [6] Tanaka T, Montanari G C, Mulhaupt R. Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 763-784. [7] Nelson J K. Overview of nanodielectrics: Insulating materials of the future[C]//2007 Electrical Insulation Conference and Electrical Manufacturing Expo, Nashville, TN, USA, 2007: 229-235. [8] Nelson J K, Fothergill J C. Internal charge behaviour of nanocomposites[J]. Nanotechnology, 2004, 15(5): 586-595. [9] Singha S, Thomas M J. Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1MHz-1GHz[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 2008, 15(1): 2-11. [10] Lewis T J. Nanometric dielectrics[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 1994, 1(5): 812-825. [11] Lewis T J. Interfaces are the dominant feature of dielectrics at the nanometric level[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 2004, 11(5): 739-753. [12] Roy M, Nelson J K, Maccrone R K., et al. Polymer nanocomposite dielectrics-The role of the interface[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 629-643. [13] Dissado L A, Fothergill J C. Electrical degradation and breakdown in polymers[B]. Peter Peregrinus, 1992. [14] Roy M, Nelson J, Maccrone R, et al. Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics[J]. Journal of Materials Science, 2007, 42(11): 3789-3799. [15] Tan Q, Cao Y, Irwin P. DC Breakdown in Polyetherimide Composites and Implication for Structural Engineering[C]//2007 IEEE International Conference on Solid Dielectrics, New York, 2007: 411-414. [16] Tuncer E, Polizos G, Sauers I, et al. Epoxy nanodielectrics fabricated with in situ and ex situ techniques[J]. Journal of Experimental Nanoscience, 2012, 7(3): 274-281. [17] Huang Xingyi, Liu Fei, Jiang Pingkai. Effect of nanoparticle surface treatment on morphology, electrical and water treeing behavior of LLDPE composites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(6): 1697-1704. [18] Kim P, Jones S C, Hotchkiss P J, et al. Phosphonic acid-modiried barium titanate polymer nanocom- posites with high permittivity and dielectric strength[J]. Advanced Materials, 2007, 19(7): 1001- 1005. [19] Li S T, Yin G L, Bai S N, et al. A new potential barrier model in epoxy resin nanodielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(5): 1535-1543. [20] Li S T, Yin G L, Li J Y. Breakdown performance of low density polyethylene nanocomposites[C]//2012 IEEE 10th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Bangalore, India, 2012: 1-4. [21] Singha S, Thomas M J. Dielectric properties of epoxy nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(1): 12-23. [22] Wang Le, Xu Man, Feng Junqiang, et al. Study on AC breakdown property of Nano-Ag/epoxy resin com- posite[C]//Proceedings of the 8th International Conference on Properties and Applications of Dielectric Materials (ICPADM), Bali, Indonesia, 2006, doi:10.1109/ICPADM.2006.284143. [23] Kojima Y, Usuki A, Kawasumi M, et al. One-pot synthesis of nylon-6 clay hybrid[J]. Journal of Polymer Science Part a: Polymer Chemistry, 1993, 31(7): 1755-1758. [24] Imai T, Sawa F, Ozaki T, et al. Influence of temperature on mechanical and insulation properties of epoxy-layered silicate nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13(2): 445-452. [25] Tuncer E, Rondinone A J, Woodward J, et al. Cobalt iron-oxide nanoparticle modified poly (methyl methacrylate) nanodielectrics[J]. Applied Physics a-Materials Science & Processing, 2009, 94(4): 843- 852. [26] Takala M, Karttunen M, Salovaara P, et al. Dielectric properties of nanostructured polypropylene- polyhedral oligomeric silsesquioxane compounds[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(1): 40-51. [27] Chen Y, Cheng Y H, Zhou J B, et al. Pulsed vacuum flashover of Al 2 O 3 /epoxy nanocomposite[C]//Inter- national Symposium on Electrical Insulating Materials (ISEIM), Yokkaichi, Japan, 2008: 36-39. [28] Li S T, Wang W W, Ni F Y, et al. Surface flashover in vacuum and bulk breakdown in polystyrene nanocomposites[C]//2011 International Symposium on Electrical Insulating Materials (ISEIM), Kyoto, Japan, 2011: 486-490. [29] Zhao W B, Zhang G J, Yang Y, et al. Correlation between trapping parameters and surface insulation strength of solid dielectric under pulse voltage in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(1): 170-178. [30] Krivda A, Tanaka T, Frechette M, et al. Characterization of epoxy microcomposite and nanocomposite materials for power engineering applications[J]. IEEE Electrical Insulation Magazine, 2012, 28(2): 38-51. [31] Kirkici H, Serkan M, Koppisetty K. Nano/micro dielectric surface flashover in partial vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(4): 790-795. [32] Cheng Y H, Wang Z B, Wu K. Pulsed vacuum surface flashover characteristics of TiO 2 /Epoxy nano-micro composites[J]. IEEE Transactions on Plasma Science, 2012, 40(1): 68-77. [33] 雷清泉, 李盛涛. 关于工程电介质中几个经常涉及的问题与思考[J]. 高电压技术, 2015, 41(8): 2473- 2480. Lei Qingquan, Li Shengtao. Thinking of several common points and questions in engineering dielectrics[J]. High Voltage Engineering, 2015, 41(8): 2473-2480. [34] Ieda M. Dielectric-breakdown process of polymers[J]. IEEE Transactions on Electrical Insulation, 1980, 15(3): 206-224. [35] Li S T, Wang W W, Yu S H, et al. Influence of hydrostatic pressure on dielectric properties of polyethylene/aluminum oxide nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(2): 519-528. [36] Artbauer J. Electric strength of polymers[J]. Journal of Physics D: Applied Physics, 1996, 29(2): 446-456. [37] Park C H, Okajima K, Hara M, et al. Effect of heat treatment on dielectric strength of polyethylene terephthalate under compressive stress[J]. IEEE Transactions on Electrical Insulation, 1983, 18(4): 380-389. [38] Nelson J K, Utracki L A, Maccrone R K, et al. Role of the interface in determining the dielectric properties of nanocomposites[C]//Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Boulder, Colorado, 2004: 314-317. [39] Utracki L A, Simha R, Garcia-Rejon A. Pressure- volume-temperature dependence of poly-epsilon- caprolactam/clay nanocomposites[J]. Macromolecules, 2003, 36(6): 2114-2121. [40] Wang W, Min D, Li S. Understanding the conduction and breakdown properties of polyethylene nanodiele- ctrics: effect of deep traps[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(1): 564-572. [41] Kao K C. Electrical conduction and breakdown in insulating polymers[C]//Proceedings of the 6th International Conference on Properties and Appli- cations of Dielectric Materials (ICPADM), Xi’an, China, 2000, 1-17. [42] Jonscher A K, Lacoste R. on a cumulative model of dielectric breakdown in solids[J]. IEEE Transactions on Electrical Insulation, 1984, 19(6): 567-577. [43] Tanaka T. Dielectric nanocomposites with insulating properties[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(5): 914-928. [44] Lewis T J. A model for nano-composite polymer dielectrics under electrical stress[C]//IEEE Inter- national Conference on Solid Dielectrics (ICSD), Winchester, UK, 2007: 11-14. [45] Lewis T J. Charge transport in polyethylene nano dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(2): 497-502. [46] 雷清泉. 纳米电介质的结构及运动的时空多层次性及其思考[C]//第354次香山科学会议, 北京, 2009: 7-19. Lei Qingquan. Space-time multi-hierarchy and thinking of structure and transport for nanodiele- ctrics[C]//The 354th Xiangshan Science Conference, Beijing, 2009: 7-19.