Advanced Polymer-Based Insulating Materials with High Energy Storage Density
Zheng Mingsheng1, Zha Junwei1, Dang Zhimin2
1. College of Biological and Chemical Engineering University of Science & Technology Beijing Beijing 100083 China; 2. Department of Electrical Engineering Tsinghua University Beijing 100084 China
Abstract:Due to the huge potential of application, the advanced polymer-based insulating materials with high energy storage density have developed fast in the recent years. This paper briefly introduced the importance of these materials, and explained the mechanism of energy storage for dielectrics. The connections between energy density and the properties of these materials were also introduced, such as dielectric permittivity, electric displacement and breakdown strength. The ways to calculate energy density and charge-discharge efficiency were discussed too. Then the recent research developments of dielectric polymers and the dielectric nanocomposites were summarized respectively, focusing on the strategies of fabrication, processing procedure, the microcosmic and macroscopic mechanism analyses and the characterization of materials. Finally, the progress and future perspectives of the polymer-based insulating materials with high energy density were summarized.
[1] 陈美福, 赵新, 金新民, 等. 直流微网中复合储能装置的并联技术研究[J]. 电工技术学报, 2016,31(增刊2): 142-149. Chen Meifu, Zhao Xin, Jin Xinmin, et al. Study on parallel technology of composite energy storage device in DC microgrid[J]. Transactions of China Electrotechnical Society, 2016, 31(S2): 142-149. [2] 李作鹏, 赵建国, 温雅琼, 等. 超级电容器电解质研究进展[J]. 化工进展, 2012, 31(8):1631-1640. Li Zuopeng, Zhao Jianguo, Wen Yaqiong, et al. Progress in electrolyte of supercapacitors[J]. Progress in Chemical Industry, 2012, 31(8): 1631- 1640. [3] 张明艳, 王晨, 吴淑龙, 等. 碳纳米管, 蒙脱土共掺杂环氧树脂复合材料介电性能研究[J]. 电工技术学报, 2016, 31(10): 152-158. Zhang Mingyan, Wang Chen, Wu Shulong, et al. Study on dielectric properties of carbon nanotubes and montmorillonite co-doped epoxy resin composites[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 152-158. [4] 刘旭堃, 于歆杰, 刘秀成, 等. 电磁轨道炮运行阶段系统发射效率和电枢出膛动能研究[J]. 电工技术学报, 2017, 32(3): 210-217. Liu Xukun, Yu Xinjie, Liu Xiucheng, et al. Study on emission efficiency and kinetic energy of armature in electromagnetic track blowing system[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(3): 210-217. [5] Dang Z M, Yuan J K, Yao S H, et al. Flexible nanodielectric materials with high permittivity for power energy storage[J]. Advanced Materials, 2013, 25(44): 6334-6365. [6] Huang X, Jiang P. Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications[J]. Advanced Materials, 2015, 27(3): 546-554. [7] 顾逸韬, 刘宏波, 马海华, 等. 电介质储能材料研究进展[J]. 绝缘材料, 2015, 48(11): 1-7, 13. Gu Yitao, Liu Hongbo, Ma Haihua, et al. Research progress of dielectric energy storage materials[J]. Insulating Materials, 2015, 48(11): 1-7, 13. [8] Dang Z M, Zheng M S, Hu P H, et al. Dielectric polymer materials for electrical energy storage and dielectric physics: A guide[J]. Journal of Advanced Physics, 2015, 4(4): 302-313. [9] Dang Z M, Zheng M S, Zha J W. 1D/2D carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage appli- cations[J]. Small, 2016, 12(13): 1688-1701. [10] Zhou X, Chu B, Wang Y, et al. Polyvinylidene Fluoride based polymeric dielectrics for high energy density capacitor application[C]//2009 IEEE 9th International Conference on the Properties and Applications of Dielectric Materials, Harbin, China, IEEE, 2009: 15-19. [11] Li Q, Wang Q. Ferroelectric polymers and their energy—related applications[J]. Macromolecular Chemistry and Physics, 2016, 217(11): 1228-1244. [12] Chu B, Zhou X, Ren K, et al. A dielectric polymer with high electric energy density and fast discharge speed[J]. Science, 2006, 313(5785): 334-336. [13] Chen Q, Chu B, Zhou X, et al. Effect of metal-polymer interface on the breakdown electric field of poly (vinylidene fluoride-trifluoroethylene- chlorofluoroethylene) terpolymer[J]. Applied Physics Letters, 2007, 91(6): 062907. [14] Zhou X, Chu B, Neese B, et al. Electrical energy density and discharge characteristics of a poly (viny- lidene fluoride-chlorotrifluoroethylene) copolymer[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(5): 1133-1138. [15] Ranjan X V, Yu L, Nardelli M B, et al. Phase equilibria in high energy density PVDF-based polymers[J]. Physical Review Letters, 2007, 99(4): 047801. [16] Bharti V, Xu H S, Shanthi G, et al. Polarization and structural properties of high-energy electron irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer films[J]. Journal of Applied Physics, 2000, 87(1): 452-461. [17] Zhou X, Zhao X, Suo Z, et al. Electrical breakdown and ultrahigh electrical energy density in poly (viny- lidenefluoride-hexafluoropropylene) copolymer[J]. Applied Physics Letters, 2009, 94(16): 162901. [18] Rahimabady M, Chen S, Yao K, et al. High electric breakdown strength and energy density in vinylidene fluoride oligomer/poly (vinylidene fluoride) blend thin films[J]. Applied Physics Letters, 2011, 99(14): 142901. [19] Guan F, Yang L, Wang J, et al. Confined ferroelectric properties in poly (vinylidene fluoride-co- chlorotrifluoroethylene)-graft-polystyrene graft copolymers for electric energy storage applications[J]. Advanced Functional Materials, 2011, 21(16): 3176-3188. [20] Thakur V K, Tan E J, Lin M F, et al. Polystyrene grafted polyvinylidenefluoride copolymers with high capacitive performance[J]. Polymer Chemistry, 2011, 2(9): 2000-2009. [21] Wu S, Li W, Lin M, et al. Aromatic polythiourea dielectrics with ultrahigh breakdown field strength, low dielectric loss, and high electric energy density[J]. Advanced Materials, 2013, 25(12): 1734-1738. [22] Wu S, Lin M, Burlingame Q, et al. Meta-aromatic polyurea with high dipole moment and dipole density for energy storage capacitors[J]. Applied Physics Letters, 2014, 104(7): 072903. [23] Wu S, Burlingame Q, Cheng Z X, et al. Strongly dipolar polythiourea and polyurea dielectrics with high electrical breakdown, low loss, and high electrical energy density[J]. Journal of Electronic Materials, 2014, 43(12): 4548-4551. [24] Li J, Claude J, Norena-Franco L E, et al. Electrical energy storage in ferroelectric polymer nano- composites containing surface-functionalized BaTiO 3 nanoparticles[J]. Chemistry of Materials, 2008, 20(20): 6304-6306. [25] 郑晖, 刘晓林, 窦晓亮, 等. 添加Ni和Ag纳米颗粒对BaTiO 3 /PVDF复合材料击穿场强的影响[J]. 复合材料学报, 2014, 31(1): 146-151. Zheng H, Liu X, Dou X, et al. Effects of Ni and Ag nanoparticles on the breakdown field strength of BaTiO 3 /PVDF composites[J]. Chinese Journal of Composites, 2014, 31(1): 146-151. [26] Wang Y, Cui J, Yuan Q, et al. Significantly enhanced breakdown strength and energy density in sandwich- structured barium titanate/poly (vinylidene fluoride) nanocomposites[J]. Advanced Materials, 2015, 27(42): 6658-6663. [27] Jung H M, Kang J H, Yang S Y, et al. Barium titanate nanoparticles with diblock copolymer shielding layers for high-energy density nanocomposites[J]. Chemistry of Materials, 2009, 22(2): 450-456. [28] Rahimabady M, Mirshekarloo M S, Yao K, et al. Dielectric behaviors and high energy storage density of nanocomposites with core-shell BaTiO 3 @TiO 2 in poly (vinylidene fluoride-hexafluoropropylene)[J]. Physical Chemistry Chemical Physics, 2013, 15(38): 16242-16248. [29] Li Q, Zhang G, Liu F, et al. Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets[J]. Energy & Environmental Science, 2015, 8(3): 922-931. [30] Li Q, Han K, Gadinski M R, et al. High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites[J]. Advanced Materials, 2014, 26(36): 6244-6249. [31] Tang H, Lin Y, Sodano H A. Synthesis of high aspect ratio batio3 nanowires for high energy density nanocomposite capacitors[J]. Advanced Energy Materials, 2013, 3(4): 451-456. [32] Tang H, Sodano H A. Ultra high energy density nanocomposite capacitors with fast discharge using Ba 0.2 Sr 0.8 TiO 3 nanowires[J]. Nano Letters, 2013, 13(4): 1373-1379. [33] Zhang X, Shen Y, Zhang Q, et al. Ultrahigh energy density of polymer nanocomposites containing BaTiO 3 @TiO 2 nanofibers by atomic-scale interface engineering[J]. Advanced Materials, 2015, 27(5): 819-824. [34] Zhang X, Shen Y, Xu B, et al. Giant energy density and improved discharge efficiency of solution- processed polymer nanocomposites for dielectric energy storage[J]. Advanced Materials, 2016, 28(10): 2055-2061.