Advances in Thermal Performance of Polymer-Based Composites
Du Boxue1, Kong Xiaoxiao1, Xiao Meng1, Li Jin1, Qian Ziming2
1. Key Laboratory of the Ministry of Education on Smart Power Grids Tianjin University Tianjin 300072 China; 2. Jiangsu Hengtong Power Cable Co. Ltd Wujiang 215200 China
Abstract:The integration, miniaturization and high-power of modern electronic and electric equipment would bring more serious heat problems. Therefore, high efficiency in heat dissipation has become an important means to improve equipment performance and extend its service life. Due to the excellent properties of electrical and mechanical properties as well as the low price, polymer materials, which are widely used for electronic and electric equipment, have become the focus of future high thermal conductivity materials. In this paper, the factors influencing the thermal conductivity (TC) of polymer are reviewed based on the introduction of microscopic mechanism, especially the interface characteristics. What's more, the research progress on the design of thermal conductive network structures is described. Then the research status of electrical performance of high TC polymer-based composites is also summarized. Finally, the trend of polymer-based composites with high thermal conductivity for electronic and electric equipment is prospected.
杜伯学, 孔晓晓, 肖萌, 李进, 钱子明. 高导热聚合物基复合材料研究进展[J]. 电工技术学报, 2018, 33(14): 3149-3159.
Du Boxue, Kong Xiaoxiao, Xiao Meng, Li Jin, Qian Ziming. Advances in Thermal Performance of Polymer-Based Composites. Transactions of China Electrotechnical Society, 2018, 33(14): 3149-3159.
[1] Tong X C.Advanced materials for thermal management of electronic packaging[M]. New York: Springer, 2011. [2] 耿庆申, 卢玉, 樊海荣. 特高压和超高压交流输电系统运行损耗比较分析[J]. 电力系统保护与控制, 2016, 44(16): 72-77. Geng Qingshen, Lu Yu, Fan Hairong.Comparative analysis of operation losses of UHV AC and EHV AC transmission systems[J]. Power System Protection and Control, 2016, 44(16): 72-77. [3] 刘赟, 俞集辉, 程鹏. 基于电磁-热耦合场的架空输电线路载流量分析与计算[J]. 电力系统保护与控制, 2015, 43(9): 28-34. Liu Yun, Yu Jihui, Cheng Peng.Analysis and calculation on the ampacity of overhead transmission lines based on electromagnetic-thermal coupling fields[J]. Power System Protection and Control, 2015, 43(9): 28-34. [4] Li Q, Chen L, Gadinski M R, et al.Flexible high- temperature dielectric materials from polymer nanocomposites[J]. Nature, 2015, 523(7562): 576. [5] 师元康, 姜振超, 赵书涛. 基于内部温度的继电保护装置时变失效率研究[J]. 电力系统保护与控制, 2016, 44(4): 123-128. Shi Yuankang, Jiang Zhenchao, Zhao Shutao.Research on time-varying failure rate of protection devices based on internal temperature[J]. Power System Protection and Control, 2016, 44(4): 123-128. [6] Huang X, Jiang P, Tanaka T.A review of dielectric polymer composites with high thermal con- ductivity[J]. IEEE Electrical Insulation Magazine, 2011, 27(4): 8-16. [7] Takezawa Y, Saeki M, Yoshida H, et al.Thermal deterioration diagnosis by optical fiber sensors for mica-epoxy insulation of HV induction motors[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2001, 8(1): 104-110. [8] Nagao M, Kosaki M, Kimura T, et al.Detection of joule heating before dielectric breakdown in polyethylene films[J]. IEEE Transactions on Electrical Insulation, 1990, 25(4): 715-722. [9] Xiao M, Du B X.Review of high thermal condu- ctivity polymer dielectrics for electrical insulation[J]. High Voltage, 2016, 1(1): 34-42. [10] 屠幼萍, 孙伟忠, 岳彩鹏. 固体绝缘材料热老化电气特性的研究[J]. 电工技术学报, 2013, 28(1): 7-13. Tu Youping, Sun Weizhong, Yue Caipeng.Research on thermal aging electrical properties of polymer materials[J]. Transactions of China Electrotechnical Society, 2013, 28(1): 7-13. [11] Song W L, Wang P, Cao L, et al.Polymer/Boron nitride nanocomposite materials for superior thermal transport performance[J]. Angewandte Chemie, 2012, 51(26): 6498-6501. [12] Zhi C, Bo Y, Takeshi T, et al.Towards thermo- conductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers[J]. Advanced Functional Materials, 2009, 19(12): 1857-1862. [13] Moore A L, Shi L.Emerging challenges and materials for thermal management of electronics[J]. Materials Today, 2014, 17(4): 163-174. [14] Han Z, Fina A.Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review[J]. Progress in Polymer Science, 2011, 36(7): 914-944. [15] Tritt T M.Thermal conductivity: theory, properties, and applications[M]. New York: Kluwer Academic/ Plenum Publishers, 2004. [16] Burger N, Laachachi A, Ferriol M, et al.Review of thermal conductivity in composites: Mechanisms, parameters and theory[J]. Progress in Polymer Science, 2016, 61: 1-28. [17] Giang T, Kim J.Effect of liquid-crystalline epoxy backbone structure on thermal conductivity of epoxy-alumina composites[J]. Journal of Electronic Materials, 2017, 46(1): 627-636. [18] Zhou W, Qi S, An Q, et al.Thermal conductivity of boron nitride reinforced polyethylene composites[J]. Materials Research Bulletin, 2007, 42(10): 1863-1873. [19] Ohki Y.Development of epoxy resin composites with high thermal conductivity[J]. IEEE Electrical Insulation Magazine, 2010, 26(1): 48-49. [20] Song W L, Wang W, Veca L M, et al.Polymer/ carbon nanocomposites for enhanced thermal transport properties-carbon nanotubes versus graphene sheets as nanoscale fillers[J]. Journal of Materials Chemistry, 2012, 22(33): 17133-17139. [21] 李冰, 刘琴. 氧化铝在导热绝缘高分子复合材料中的应用[J]. 塑料助剂, 2008(3): 14-16. Li Bing, Liu Qin.The application of Al2O3 in thermal conducting and insulating polymer composite[J]. Plastic Additives, 2008(3): 14-16. [22] 王旗, 李喆, 尹毅. 微/纳米氧化铝/环氧树脂复合材料抑制电树枝生长能力的研究[J]. 电工技术学报, 2015, 30(6): 255-260. Wang Qi, Li Zhe, Yin Yi.The effect of micro and nano alumina on the ability of impedance on the electrical tree of epoxy resin[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 255-260. [23] 王有元, 王施又, 陆国俊. 纳米AlN改性对干式变压器环氧树脂绝缘性能的影响[J]. 电工技术学报, 2017, 32(7): 174-180. Wang Youyuan, Wang Shiyou, Lu Guojun.Influence of nano-AlN modification on the insulation properties of epoxy resin of dry-type transformers[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 174-180. [24] 睢雪珍, 周文英, 董丽娜, 等. 氮化铝/聚合物基导热复合材料研究进展[J]. 现代塑料加工应用, 2015, 27(6): 53-56. Sui Xuezhen, Zhou Wenying, Dong Lina.Study progress on thermal conductive AlN/polymer composites[J]. Modern Plastics Processing and Applications, 2015, 27(6): 53-56. [25] Lin Y, Connell J W.Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene[J]. Nanoscale, 2012, 4(22): 6908. [26] Wang X B, Weng Q, Wang X, et al.Biomass-directed synthesis of 20g high-quality boron nitride nanosheets for thermoconductive polymeric composites[J]. Acs Nano, 2014, 8(9): 9081-9088. [27] Golberg D, Bando Y, Huang Y, et al.Boron nitride nanotubes and nanosheets[J]. Acs Nano, 2010, 4(6): 2979. [28] Warzoha R J, Fleischer A S.Heat flow at nanoparticle interfaces[J]. Nano Energy, 2014, 6(10): 137-158. [29] Huang X, Iizuka T, Jiang P, et al.Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites[J]. Journal of Physical Chemistry C, 2012, 116(25): 13629-13639. [30] Yu J, Huang X, Wu C, et al.Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties[J]. Polymer, 2012, 53(2): 471-480. [31] Yao Y, Zeng X, Wang F, et al.Significant enhancement of thermal conductivity in bioinspired freestanding boron nitride papers filled with graphene oxide[J]. Chemistry of Materials, 2016, 80(10): 1357-1359. [32] Zhou Y, Yao Y, Chen C Y, et al.The use of polyimide-modified aluminum nitride fillers in AlN@PI/Epoxy composites with enhanced thermal conductivity for electronic encapsulation[J]. Scientific Reports, 2014, 4(7497): 4779. [33] Chen C, Tang Y, Ye Y S, et al.High-performance epoxy/silica coated silver nanowire composites as under-fill material for electronic packaging[J]. Com- posites Science & Technology, 2014, 105: 80-85. [34] Zhang X, Shen L, Wu H, et al.Enhanced thermally conductivity and mechanical properties of polyethylene (PE)/boron nitride (BN) composites through multistage stretching extrusion[J]. Composites Science & Technology, 2013, 89(4): 24-28. [35] Kuang Z, Chen Y, Lu Y, et al.Fabrication of highly oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with high thermal conductivity[J]. Small, 2015, 11(14): 1655-1659. [36] Yan H, Tang Y, Long W, et al.Enhanced thermal conductivity in polymer composites with aligned graphene nanosheets[J]. Journal of Materials Science, 2014, 49(15): 5256-5264. [37] Lin Z, Liu Y, Raghavan S, et al.Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation[J]. Acs Applied Materials & Interfaces, 2013, 5(15): 7633-7640. [38] Cho H B, Konno A, Fujihara T, et al.Self-assemblies of linearly aligned diamond fillers in polysiloxane/ diamond composite films with enhanced thermal conductivity[J]. Composites Science & Technology, 2012, 72(1): 112-118. [39] Fujihara T, Cho H B, Nakayama T, et al.Field- induced orientation of hexagonal boron nitride nanosheets using microscopic mold for thermal interface materials[J]. Journal of the American Ceramic Society, 2012, 95(1): 369-373. [40] Leung S N, Khan M O, Chan E, et al.Synergistic effects of hybrid fillers on the development of thermally conductive polyphenylene sulfide com- posites[J]. Journal of Applied Polymer Science, 2012, 127(5): 3293-3301. [41] Choi S, Kim J.Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers[J]. Composites Part B Engineering, 2013, 51: 140-147. [42] Su J, Xiao Y, Ren M.Enhanced thermal conductivity in epoxy nanocomposites with hybrid boron nitride nanotubes and nanosheets[J]. Physica Status Solidi Applications & Materials, 2013, 210: 2699-2705. [43] Zhang D L, Zha J W, Li C Q, et al.High thermal conductivity and excellent electrical insulation performance in double-percolated three-phase polymer nanocomposites[J]. Composites Science and Tech- nology, 2017, 144: 36-42. [44] Yorifuji D, Ando S.Enhanced thermal conductivity over percolation threshold in polyimide blend films containing ZnO nano-pyramidal particles: Advantage of vertical double percolation structure[J]. Journal of Materials Chemistry, 2011, 21(12): 4402-4407. [45] Wang Z, Cheng Y, Wang H, et al.Sandwiched epoxy-alumina composites with synergistically enhanced thermal conductivity and breakdown strength[J]. Journal of Materials Science, 2017, 52(8): 4299-4308. [46] Zeng X, Yao Y, Gong Z, et al.Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement[J]. Small, 2015, 11(46): 6205. [47] Chen J, Huang X, Zhu Y, et al.Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability[J]. Advanced Functional Materials, 2017, 27(5): 1604754. [48] Cho H B, Tokoi Y, Tanaka S, et al.Modification of BN nanosheets and their thermal conducting properties in nanocomposite film with polysiloxane according to the orientation of BN[J]. Composites Science & Technology, 2011, 71(8): 1046-1052. [49] Du B X, Cui B, Xiao M.Thermal conductivity and arcing resistance of micro or hybrid BN filled polyethylene under pulse strength[J]. IEEE Transa- ctions on Dielectrics & Electrical Insulation, 2016, 23(5): 3061-3070. [50] Teng C C, Ma C C M, Chiou K C, et al. Synergetic effect of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites[J]. Materials Chemistry & Physics, 2011, 126(3): 722-728. [51] Cao J P, Zhao J, Zhao X, et al.High thermal conductivity and high electrical resistivity of poly (vinylidene fluoride)/polystyrene blends by controlling the localization of hybrid fillers[J]. Composites Science & Technology, 2013, 89(1): 142-148. [52] Du B X, Xiao M.Effects of thermally conducting particles on resistance to tracking failure of polyimide/BN composites[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2014, 21(4): 1565-1572. [53] Du B X, Xu H.Effects of thermal conductivity on DC resistance to erosion of silicone rubber/BN nanocom- posites[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2014, 21(2): 511-518. [54] Du B X, Xiao M, Zhang J W.Effect of thermal conductivity on tracking failure of epoxy/BN composite under pulse strength[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2013, 20(1): 296-302.