电工技术学报  2019, Vol. 34 Issue (9): 1952-1959    DOI: 10.19595/j.cnki.1000-6753.tces.180933
电力系统 |
基于PageRank改进算法的电力系统关键节点识别
李昌超1, 康忠健1, 于洪国1, 李鑫1, 赵兵2
1. 中国石油大学(华东)信息与控制工程学院 青岛 266580;
2. 中国电力科学研究院有限公司 北京 100192
Identification Method of Key Nodes in Power System Based on Improved PageRank Algorithm
Li Changchao1, Kang Zhongjian1, Yu Hongguo1, Li Xin1, Zhao Bing2
1. College of Information and Control Engineering China University of Petroleum Qingdao 266580 China;
2. China Electric Power Research Institute Co. Ltd Beijing 100192 China
全文: PDF (912 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了能够在电力系统发生故障之初准确识别出系统中关键节点,提出一种基于PageRank改进算法的系统关键节点识别方法。首先,通过雅可比矩阵获取系统的电压无功灵敏度矩阵和相角有功灵敏度矩阵,定义系统不同指标下的链接矩阵。其次,考虑电力通信系统对电网的影响,基于节点收缩原理定义系统衍生网络,并对链接矩阵进行修正得到网络拓展矩阵。最后,基于改进的PageRank算法得到系统节点重要性权重,并按照权重值对节点排序。通过IEEE 39节点系统的仿真验证了该方法的正确性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李昌超
康忠健
于洪国
李鑫
赵兵
关键词 安全稳定改进PageRank算法灵敏度衍生网络关键节点    
Abstract:In order to identify the key nodes at the beginning of the power system fault, a recognition method of key nodes based on the improved PageRank algorithm is proposed. First, the sensitivity matrix of voltage reactive power and the sensitivity matrix of phase angle active power are obtained based on Jacobi matrix to define the link matrices under different indices of system. Secondly, considering the influence of power communication system on power network, the derived networks are defined based on the node contraction principle, and the link matrices are modified to get the network expansion matrices. Finally, the weight of system nodes are obtained based on the improved PageRank algorithm and the system nodes are sorted according to the weight values. The correctness of the method is verified on the simulation of IEEE39 bus system.
Key wordsSecurity and stability    improved PageRank algorithm    sensitivity    derivative network    key nodes   
收稿日期: 2018-05-31      出版日期: 2019-05-14
PACS: TM711  
基金资助:中央高校基本科研业务费专项资金(16CX06052A)、国家电网科技计划项目(SGZJ0000KXJS1800332)资助
引用本文:   
李昌超, 康忠健, 于洪国, 李鑫, 赵兵. 基于PageRank改进算法的电力系统关键节点识别[J]. 电工技术学报, 2019, 34(9): 1952-1959. Li Changchao, Kang Zhongjian, Yu Hongguo, Li Xin, Zhao Bing. Identification Method of Key Nodes in Power System Based on Improved PageRank Algorithm. Transactions of China Electrotechnical Society, 2019, 34(9): 1952-1959.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.180933          https://dgjsxb.ces-transaction.com/CN/Y2019/V34/I9/1952