The Flexible Interconnection Strategy between DC Microgrid and AC Grid Based on Virtual Electric Machinery Technology
Lan Zheng1, Tu Chunming2, Jiang Fei3
1. College of Electrical and Information Engineering Hunan University of Technology Zhuzhou 412007 China; 2. National Electric Power Conversion and Control Engineering Technology Research Center Hunan University Changsha 410082 China; 3. College of Electrical and Information Changsha University of Science and Technology Changsha 410082 China
Abstract:The interface converter of DC microgrid mostly adopt “rigid” control strategy, which is insufficient with inertia and damping. It causes the DC microgrid to lack a mechanism for flexible interconnection with the AC grid and cannot actively participate in the power regulation. In this paper, a flexible interconnection strategy between DC microgrid and AC grid based on virtual electric machinery technology is proposed. The interface converter adopts cascaded power electronic transformer, and both the ac side and the dc side integrate unified virtual motor control, simulating the operation characteristics of the rotating machinery. The DC microgrid exhibits flexible features, reduces the impact on AC grid caused by the internal power fluctuations, and improves the stability of the DC bus voltage. At the same time, the active and reactive power of the interface can be adjusted actively to support the frequency and voltage of the AC grid. The proposed flexible interconnection method has been verified by the simulation results in PSCAD/EMTDC.
兰征, 涂春鸣, 姜飞. 基于虚拟电机技术的直流微电网与主电网柔性互联策略[J]. 电工技术学报, 2019, 34(8): 1739-1749.
Lan Zheng, Tu Chunming, Jiang Fei. The Flexible Interconnection Strategy between DC Microgrid and AC Grid Based on Virtual Electric Machinery Technology. Transactions of China Electrotechnical Society, 2019, 34(8): 1739-1749.
[1] Lasseter R H.Microgrids and distributed gener- ation[J]. Journal of Energy Engineering, 2007, 133(3): 144-149. [2] 肖湘宁, 陈征, 刘念. 可再生能源与电动汽车充放电设施在微电网中的集成模式与关键问题[J]. 电工技术学报, 2013, 28(2): 1-14. Xiao Xiangning, Chen Zheng, Liu Nian.Integrated mode and key issues of renewable energy sources and electric vehicles’ charging and discharging facilities in microgrid[J]. Transactions of China Electro- technical Society, 2013, 28(2): 1-14. [3] Ito Y, Yang Z Q, Akagi H.DC micro-grid base distribution power generation system[C]//Power Electronics and Motion Control Conference, Xi’an, China, 2004: 1740-1745. [4] Planas E, Andreu J, Gárate J I, et al.AC and DC technology in microgrids: a review[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 726-749. [5] 张永明, 丁宝, 傅卫东, 等. 基于直流配电与直流微网的电气节能研究[J]. 电工技术学报, 2015, 30(增刊1): 389-397. Zhang Yongming, Ding Bao, Fu Weidong, et al.Electrical energy conservation based on DC distribution and DC microgrid[J]. Transactions of China Electrotechnical Society, 2015, 30(S1): 389-397. [6] Baran M E, Mahajan N R.DC distribution for industrial systems: opportunities and challenges[J]. IEEE Transactions on Industry Applications, 2003, 39(6): 1596-1601. [7] Sannino A, Postiglione G, Bollen M H J. Feasibility of a DC network for commercial facilities[J]. IEEE Transactions on Industry Applications, 2003, 39(5): 1499-1507. [8] Chen F, Burgos R, Boroyevich D.A transformerless single-phase utility interface converter to attenuate common-mode voltage for DC microgrid[C]//IEEE 3rd International Future Energy Electronics Con- ference and ECCE Asia, Kaohsiung, 2017: 157-162. [9] Byoung-Sun Ko, Gi-Young Lee, Rae-Young Kim, et al.A positioning method of distributed power system for minimum voltage variation in a DC microgrid[C]// IEEE 3rd International Future Energy Electronics Conference and ECCE Asia, Kaohsiung, 2017: 1019-1024. [10] Kakigano H, Miura Y, Ise T.Low-voltage bipolar type DC microgrid for super high quality distri- bution[J]. IEEE Transactions on Power Electronics, 2010, 25(12): 3066-3075. [11] 肖湘宁. 新一代电网中多源多变换复杂交直流系统的基础问题[J]. 电工技术学报, 2015, 30(15): 1-14. Xiao Xiangning.Basic problems of the new complex AC-DC power grid with multiple energy resources and multiple conversions[J]. Transactions of China Electrotechnical Society, 2015, 30(15): 1-14. [12] 兰征, 涂春鸣, 肖凡, 等. 电力电子变压器对交直流混合微网功率控制的研究[J]. 电工技术学报, 2015, 30(23): 50-57. Lan Zheng, Tu Chunming, Xiao Fan, et al.The power control of power electronic transformer in hybrid AC-DC microgrid[J]. Transactions of China Electro- technical Society, 2015, 30(23): 50-57. [13] Josep M Guerrero, Juan C Vasquez, José Matas, et al.Hierarchical control of droop-controlled ac and DC microgrids—a general approach toward standardi- zation[J]. IEEE Transactions on Industrial Electro- nics, 2010, 58(1): 158-172. [14] 周逢权, 黄伟. 直流配电网系统关键技术探讨[J]. 电力系统保护与控制, 2014, 42(22): 62-67. Zhou Fengquan, Huang Wei.Study on the key technology of DC distribution power network[J]. Power System Protection and Control, 2014, 42(22): 62-67. [15] Huang A Q, Crow M L, Heydt G T, et al.The future renewable electric energy delivery and management (FREEDM) system: the energy internet[J]. Pro- ceedings of the IEEE, 2011, 99(1): 133-148. [16] 李子欣, 王平, 楚遵方, 等. 面向中高压智能配电网的电力电子变压器研究[J]. 电网技术, 2013, 37(9): 2592-2601. Li Zixin, Wang Ping, Chu Zunfang, et al.Research on medium- and high-voltage smart distribution grid oriented power electronic transformer[J]. Power System Technology, 2013, 37(9): 2592-2601. [17] Liserre M, Buticchi G, Andresen M, et al.The smart transformer: impact on the electric grid and technology challenges[J]. IEEE Industrial Electronics Magazine, 2016, 10(2): 46-58. [18] Wang Dan, Tian Jie, Mao Chengxiong, et al.A 10kV/400V 500kVA electronic power transformer[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 6653-6663. [19] 凌晨, 葛宝明, 毕大强. 配电网中的电力电子变压器研究[J]. 电力系统保护与控制, 2012, 40(2): 34-39. Ling Chen, Ge Baoming, Bi Daqiang.A power electronic transformer applied to distribution system[J]. Power System Protection and Control, 2012, 40(2): 34-39. [20] Beck H P, Hesse R.Virtual synchronous machine[C]// 2007 9th International Conference on Electrical Power Quality and Utilisation, Barcelona, 2007: 1-6. [21] Zhong Qingchang, Weiss G.Synchronverters: inverters that mimic synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1259-1267. [22] 吕志鹏, 盛万兴, 刘海涛, 等. 虚拟同步机技术在电力系统中的应用与挑战[J]. 中国电机工程学报, 2017, 37(2): 349-360. Lü Zhipeng, Sheng Wanxing, Liu Haitao, et al.Application and challenge of virtual synchronous machine technology in power system[J]. Proceedings of the CSEE, 2017, 37(2): 349-360. [23] Arricibita D, Sanchis P, Marroyo L.Virtual synchronous generators classification and common trends[C]//IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, 2016: 2433-2438. [24] 米阳, 吴彦伟, 符杨, 等. 独立光储直流微电网分层协调控制[J]. 电力系统保护与控制, 2017, 45(8): 37-45. Mi Yang, Wu Yanwei, Fu Yang, et al.Hierarchical coordinated control of island DC microgrid with photovoltaic and storage system[J]. Power System Protection and Control, 2017, 45(8): 37-45. [25] 吕志鹏, 盛万兴, 钟庆昌, 等. 虚拟同步发电机及其在微电网中的应用[J]. 中国电机工程学报, 2014, 34(16): 2591-2603. Lü Zhipeng, Sheng Wanxing, Zhong Qingchang, et al.Virtual synchronous generator and its applications in micro-grid[J]. Proceedings of the CSEE, 2014, 34(16): 2591-2603. [26] Wu D, Tang F, Dragicevic T, et al.Coordinated control based on bus-signaling and virtual inertia for islanded DC microgrids[J]. IEEE Transactions on Smart Grid, 2015, 6(6): 2627-2638. [27] Shamsi P, Fahimi B.Stability assessment of a DC distribution network in a hybrid micro-grid appli- cation[J]. IEEE Transactions on Smart Grid, 2014, 5(5): 2527-2534. [28] 辜承林, 陈乔夫, 熊永前. 电机学[M]. 2版. 武汉: 华中科技大学出版社, 2005.