A Review of Degradation of SF6 Waste by Low Temperature Plasma
Zhang Xiaoxing1, 2, Xiao Hanyan1, Huang Yangjue3
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China;; 2. School of Electrical Engineering Wuhan University Wuhan 430074 China; 3. Electric Power Science Research Institute Guangdong Power Grid Corporation Guangzhou 510030 China
Abstract:The low temperature plasma technology for waste gas treatment attracts more and more attention. It becomes an important tendency in future’s environmental protection industry. Due to the physical and chemical properties, the treatment of the strong greenhouse gas SF6 by plasma is faced with more challenges. However, the related researches have rarely been reviewed so far. This paper describes the reaction mechanism as well as three evaluation indexes of plasma treatment of SF6. According to three main plasma treatment methods including radio frequency, microwave and dielectric barrier discharge, the influences of various factors on the destruction and removal efficiency, energy yield and the final byproducts were then comprehensively overviewed. Moreover, the further issues and the future research directions were also presented. Finally, the feasibility of its industrialization was analyzed.
张晓星, 肖焓艳,黄杨珏. 低温等离子体处理SF6废气综述[J]. 电工技术学报, 2016, 31(24): 16-24.
Zhang Xiaoxing,Xiao Hanyan,Huang Yangjue. A Review of Degradation of SF6 Waste by Low Temperature Plasma. Transactions of China Electrotechnical Society, 2016, 31(24): 16-24.
[1] 颜湘莲, 王承玉, 季严松, 等. 气体绝缘设备中SF 6 气体分解产物与设备故障关系的建模[J]. 电工技术学报, 2015, 30(22): 231-238. Yan Xianglian, Wang Chengyu, Ji Yansong, et al. Modeling of the relation between SF 6 decomposition products and interior faults in gas insulated equipment[J]. Transactions of China Electrotechnical Society, 2015, 30(22): 231-238. [2] 汪沨, 李敏, 李锰, 等. 基于ETG-通量校正传输法的短间隙SF 6 /N 2 混合气体流注放电数值仿真[J]. 电工技术学报, 2016, 31(6): 234-241. Wang Feng, Li Min, Li Meng, et al. Numerical simulation of short gap streamer discharge in SF 6 /N 2 gas mixtures based on Euler-Taylor-Galerkin-flux corrected transport method[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 234-241. [3] Fang X, Hu X, Janssensmaenhout G, et al. Sulfur hexafluoride (SF 6 ) emission estimates for China: an inventory for 1990-2010 and a projection to 2020[J]. Environmental Science & Technology, 2013, 47(8): 3848-3855. [4] 杨志超, 范立新, 杨成顺, 等. 基于GK模糊聚类和LS-SVC的GIS局部放电类型识别[J]. 电力系统保护与控制, 2014, 42(20): 38-45. Yang Zhichao, Fan Lixin, Yang Chengshun, et al. Identification of partial discharge in gas insulated switchgears based on GK fuzzy clustering & LS-SVM[J]. Power System Protection and Control, 2014, 42(20): 38-45. [5] Matsui R, Cvitkovitch D. History of atmospheric SF 6 from 1973 to 2008[J]. Atmospheric Chemistry & Physics, 2010, 10(21): 10305-10320. [6] Dervos C T, Vassiliou P. Sulfur hexafluoride (SF 6 ): global environmental effects and toxic byproduct formation[J]. Journal of the Air & Waste Manage- ment Association, 2000, 50(1): 137-141. [7] 张刘春, 肖登明, 张栋, 等. c-C 4 F 8 /CF 4 替代SF 6 可行性的SST实验分析[J]. 电工技术学报, 2008, 23(6): 14-18. Zhang Liuchun, Xiao Dengming, Zhang Dong, et al. SST experimental analysis on the feasibility of c-C 4 F 8 /CF 4 substituting SF 6 as insulation medium[J]. Transactions of China Electrotechnical Society, 2008, 23(6): 14-18. [8] 张晓星, 周君杰, 唐炬, 等. CF 3 I-CO 2 混合气体在针板电极下局部放电绝缘特性实验研究[J]. 电工技术学报, 2013, 28(1): 36-42. Zhang Xiaoxing, Zhou Junjie, Tang Ju, et al. Experimental study of partial discharge insulating properties for CF 3 I-CO 2 mixtures under needle-plate electrode[J]. Transactions of China Electrotechnical Society, 2013, 28(1): 36-42. [9] Vondrák J, Sedlaříková M, Liedermann K S. Sulfur hexafluoride, its properties and use[J]. Chemicke Listy, 2001, 95(12): 791-795. [10] Ravishankara A R, Solomon S, Turnipseed A A, et al. Atmospheric lifetimes of long-lived halogenated species[J]. Science, 1993, 259(5092): 194-199. [11] Christophorou L G, Olthoff J K. Electron interactions with SF 6 [J]. Journal of Physical & Chemical Reference Data, 2000, 29(3): 449-473. [12] Young Sun M, Donghong K. Decomposition of sulfur hexafluoride by using a nonthermal plasma-assisted catalytic process[J]. Journal-Korean Physical Society, 2011, 59(6): 3437-3441. [13] Minliang Shih, Wen-Jhy Lee, Cheng-Hsien Tsai. Decomposition of SF 6 in an RF plasma environ- ment[J]. Journal of the Air & Waste Management Association, 2002, 52(11): 1274-1280. [14] Hong Y C, Uhm H S, Chun B J, et al. Microwave plasma torch abatement of NF 3 and SF 6 [J]. Physics of Plasmas, 2006, 13(3): 321. [15] Lee H M, Chang M B, Wu K Y. Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric-pressure plasmas[J]. Journal of the Air & Waste Management Association, 2004, 54(8): 960-970. [16] Ryan K R, Plumb I C. Gas-phase reactions in plasmas of SF 6 with O 2 in He[J]. Plasma Chemistry & Plasma Processing, 1988, 8(3): 263-280. [17] Van Brunt R J, Herron J T. Plasma chemical model for decomposition of SF 6 in a negative glow corona discharge[J]. Physica Scripta, 2007, 1994(T53): 9-29. [18] Jiang Nan, Lu Na, Li Jie, et al. Degradation of benzene by using a silent-packed bed hybrid discharge plasma reactor[J]. Plasma Science & Technology, 2012, 14(2): 140-146. [19] 金成刚. 射频等离子体放电及材料处理研究[D]. 苏州: 苏州大学, 2014. [20] Wang Y F, Lee W J, Chen C Y, et al. Reaction mechanisms in both a CHF 3 /O 2 /Ar and CHF 3 /H 2 /Ar radio frequency plasma environment[J]. Industrial & Engineering Chemistry Research, 1999, 38(9): 3199- 3210. [21] Minliang Shih, Wenjhy Lee A, Chen C Y. Decom- position of SF 6 and H 2 S mixture in radio frequency plasma environment[J]. Industrial & Engineering Chemistry Research, 2003, 42(13): 2906-2912. [22] Joshi A V. Decomposition of SF 6 -R134a effluents by RF plasma[J]. Nuclear Instruments & Methods in Physics Research, 2010, 661(4): S245-S248. [23] Kabouzi Y, Calzada M D, Moisan M, et al. Radial contraction of microwave-sustained plasma columns at atmospheric pressure[J]. Journal of Applied Physics, 2002, 91(3): 1008-1019. [24] Baeva M, Gier H, Pott A, et al. Studies on gas purification by a pulsed microwave discharge at 2.46GHz in mixtures of N 2 /NO/O 2 at atmospheric pressure[J]. Plasma Chemistry & Plasma Processing, 2001, 21(2): 225-247. [25] 刘南. 微波等离子体处理环境污染物的研究[D]. 长春: 吉林大学, 2008. [26] Kabouzi Y, Moisan M, Rostaing J C, et al. Abatement of perfluorinated compounds using microwave plasmas at atmospheric pressure[J]. Journal of App- lied Physics, 2003, 93(12): 9483-9496. [27] Ahmadi Z, Khani M R, Kooshki S, et al. Investigation of variation power and additive gas effect on the SF 6 destruction using atmospheric microwave plasma torch[J]. IEEE Transactions on Plasma Science, 2011, 39(9): 1834-1841. [28] Radoiu M, Hussain S. Microwave plasma removal of sulphur hexafluoride[J]. Journal of Hazardous Mate- rials, 2009, 164(1): 39-45. [29] Kim J H, Cho C H, Shin D H, et al. Abatement of fluorinated compounds using a 2.45GHz microwave plasma torch with a reverse vortex plasma reactor[J]. Journal of Hazardous Materials, 2015, 294(14): 41-46. [30] 王新新. 介质阻挡放电及其应用[J]. 高电压技术, 2009, 35(1): 1-11. Wang Xinxin. Dielectric barrier discharge and its applications[J]. High Voltage Engineering, 2009, 35(1): 1-11. [31] Zhuang Q, Clements B, Mcfarlan A, et al. Decompo- sition of the most potent greenhouse gas (GHG) sulphur hexafluoride (SF 6 ) using a dielectric barrier discharge (DBD) plasma[J]. Canadian Journal of Chemical Engineering, 2014, 92(1): 32-35. [32] 沈燕, 黄丽, 张仁熙, 等. 介质阻挡放电降解SF 6 的研究[J]. 环境化学, 2007, 26(3): 275-279. Shen Yan, Huang Li, Zhang Renxi, et al. Decom- position of SF 6 by dielectric barrier discharge[J]. Environmental Chemistry, 2007, 26(3): 275-279. [33] 沈燕. 强温室气体SF 6 、SF 5 CF 3 与CF 4 的等离子体降解与光降解过程的研究[D]. 上海: 复旦大学, 2008. [34] Zhang Renxi, Wang Jingting, Cao Xu, et al. Decomposition of potent greenhouse gases SF 6 , CF 4 and SF 5 CF 3 by dielectric barrier discharge[J]. Plasma Sciences & Technology, 2016, 18(4): 388-393. [35] Zhang J, Zhou J Z, Liu Q, et al. Efficient removal of sulfur hexafluoride (SF 6 ) through reacting with recycled electroplating sludge[J]. Environmental Science & Technology, 2013, 47(12): 6493-6499. [36] Tsai C H, Shao J M. Formation of fluorine for abating sulfur hexafluoride in an atmospheric-pressure plasma environment[J]. Journal of Hazardous Materials, 2008, 157(1): 201-206. [37] Zhang H, Li K, Shu C, et al. Enhancement of styrene removal using a novel double-tube dielectric barrier discharge (DDBD) reactor[J]. Chemical Engineering Journal, 2014, 256(8):107-118. [38] Nan J, Na L, Shang K, et al. Effects of electrode geometry on the performance of dielectric barrier/ packed-bed discharge plasmas in benzene degra- dation[J]. Journal of Hazardous Materials, 2013, 262(22): 387-393. [39] Mauthe G, Niemeyer L, Pryor B M, et al. SF 6 and the global atmosphere[R]. Electra, 1996, 164: 121-131. [40] U.S. Environmental Protection Agency (USEPA). Global mitigation of non-CO 2 greenhouse gases: 2010-2030[R]. Washington DC, USEPA, 2013. [41] 梁方建, 王钰, 王志龙, 等. 六氟化硫气体在电力设备中的应用现状及问题[J]. 绝缘材料, 2010, 43(3): 43-46. Liang Fangjian, Wang Yu, Wang Zhilong, et al. The application situation of SF 6 in electrical equipment and some problem[J]. Insulating Materials, 2010, 43(3): 43-46. [42] 李春海, 陈洪雨, 陈贺, 等. 基于塔式扩散模型的火电厂污染物监测方法研究[J]. 电力系统保护与控制, 2016, 44(8): 79-84. Li Chunhai, Chen Hongyu, Chen He, et al. Study on the method of pollutant monitoring in thermal power plant based on the tower model[J]. Power System Protection and Control, 2016, 44(8): 79-84. [43] 李绍金, 周任军, 周胜瑜, 等. 电力系统环保经济负荷分配的模糊自修正粒子群算法[J]. 电力系统保护与控制, 2014, 42(8): 15-21. Li Shaojin, Zhou Renjun, Zhou Shengyu, et al. Fuzzy self-correction particle swarm optimization of environmental economic load distribution in power system[J]. Power System Protection and Control, 2014, 42(8): 15-21.