[1] 邵涛, 严萍. 大气压气体放电及其等离子体应用[M]. 北京: 科学出版社, 2015.
[2] Bárdos L, Baránková H. Cold atmospheric plasma: Sources, processes, and applications[J]. Thin Solid Films, 2010, 518(23): 6705-6713.
[3] 李和平, 于达仁, 孙文廷, 等. 大气压放电等离子体研究进展综述[J]. 高电压技术, 2016, 42(12): 3697-3727.
Li Heping, Yu Daren, Sun Wenting, et al. State- of-the-art of atmospheric discharge plasmas[J]. High Voltage Engineering, 2016, 42(12): 3697-3727.
[4] 欧阳吉庭, 张宇, 秦宇. 微放电及其应用[J]. 高电压技术, 2016, 42(3): 673-684.
Ou-Yang Jiting, Zhang Yu, Qin Yu. Micro-discharge and its applications[J]. High Voltage Engineering, 2016, 42(3): 673-684.
[5] Schoenbach K H, Becker K. 20 years of microplasma research: a status report[J]. The European Physical Journal D, 2016, 70(2): 1-22.
[6] Lu X, Naidis G V, Laroussi M, et al. Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects[J]. Physics Reports, 2016, 630: 1-84.
[7] Vladimir S, Jarmila P, Hana S, et al. Nonthermal plasma—a tool for decontamination and disinfe- ction[J]. Biotechnology Advances, 2015, 33(6): 1108-1119.
[8] 王新新, 付洋洋. 气体放电的相似性[J]. 高电压技术, 2014, 40(10): 2966-2972.
Wang Xinxin, Fu Yangyang. Similarity in gas discharges[J]. High Voltage Engineering, 2014, 40(10): 2966-2972.
[9] Brisset J L, Pawlat J. Chemical effects of air plasma species on aqueous solutes in direct and delayed exposure modes: discharge, post-discharge and plasma activated water[J]. Plasma Chemistry and Plasma Processing, 2016, 36(2): 1-27.
[10] Bruggeman P, Kushner M J, Locke B R, et al. Plasma-liquid interactions: a review and roadmap[J]. Plasma Sources Science and Technology, 2016, 25(5): 053002.
[11] 吴淑群, 聂兰兰, 卢新培. 大气压非平衡等离子体射流[J]. 高电压技术, 2015, 41(8): 2602-2624.
Wu Shuqun, Nie Lanlan, Lu Xinpei. Atmospheric- pressure non-equilibrium plasma jets[J]. High Voltage Engineering, 2015, 41(8): 2602-2624.
[12] Bruggeman P, Brandenburg R. Atmospheric pressure discharge filaments and microplasmas: physics, chemistry and diagnostics[J]. Journal of Physics D: Applied Physics, 2013, 46(46): 464001.
[13] Yatom S, Shlapakovski A, Beilin L, et al. Recent studies on nanosecond-timescale pressurized gas discharges[J]. Plasma Sources Science and Techno- logy, 2016, 25(6): 064001.
[14] Lu X, Laroussi M, Puech V. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets[J]. Plasma Sources Science and Technology, 2012, 21(3): 034005.
[15] 张凯, 王瑞雪, 韩伟, 等. 等离子体重油加工技术研究进展[J]. 电工技术学报, 2016, 31(24): 1-15.
Zhang Kai, Wang Ruixue, Han Wei, et al. Progress of Heavy Oil Processing by Plasma Technology[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 1-15.
[16] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3): 685- 705.
Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engen- eering, 2016, 42(3): 685-705.
[17] 陈思乐, 许桂敏, 穆海宝, 等. 低温等离子体处理柴油机尾气的研究进展[J]. 高压电器, 2016, 52(4): 22-29.
Chen Sile, Xu Guimin, Mu Haibao, el at. Research progress in treatment of diesel engine exhaust by non-thermal plasmas[J]. High Voltage Apparatus, 2016, 52(4): 22-29.
[18] Laroussi M. Low-Temperature Plasma Jet for Biome- dical Applications: A Review[J]. Plasma Science IEEE Transactions on, 2015, 43(3): 703-712.
[19] Zhang Cheng, Shao Tao, Yan Ping, et al. Generation of X-ray emission in repetitive nanosecond-pulse discharge at atmospheric pressure[J]. High Voltage Engineering, 2013, 39(9): 2095-2104.
[20] 聂秋月, 张晓菲, 李和平, 等. 大气压介质阻挡放电等离子体射流源研究进展[J]. 中国科学: 物理学 力学 天文学, 2014, 44(11): 1157-1169.
Nie Qiuyue, Zhang Xiaofei, Li Heping, et al. Advances of atmospheric-pressure dielectric-barrier- discharge plasma jet[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2014, 44(11): 1157-1169.
[21] 卢新培, 严萍, 任春生, 等. 大气压脉冲放电等离子体的研究现状与展望[J]. 中国科学: 物理学 力学 天文学, 2011, 41(7): 801-815.
Lu Xinpei, Yan Ping, Ren Chunsheng, et al. Review on atmospheric pressure pulsed DC discharge[J]. SCIENTIA SINICA Physica, Mechanica & Astrono- mica, 2011, 41(7): 801-815
[22] 赵政, 钟旭, 李征, 等. 基于雪崩三极管的高重频高压纳秒脉冲产生方法综述[J]. 电工技术学报, 2017, 32(8): 33-47.
Zhao Zheng, Zhong Xu, Li Zheng, et al. Review on the Methods of Generating High-Repetitive- Frequency High-Voltage Nanosecond Pulses Based on Avalanche Transistors[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 33-47.
[23] Snoeckx R, Bogaerts A. Plasma technology-a novel solution for CO 2 conversion?[J]. Chemical Society Reviews, 2017, doi:10.1039/C6CS00066E
[24] Ouyang L, Cao Z, Wang H, et al. Application of dielectric barrier discharge plasma-assisted milling in energy storage materials-A review[J]. Journal of Alloys and Compounds, 2017, 691: 422-435.
[25] Brandenburg R. Dielectric barrier discharges: pro- gress on plasma sources and on the understanding of regimes and single filaments[J]. Plasma Sources Science and Technology, 2017, 26(5): 053001.
[26] Adamovich I, Baalrud S D, Bogaerts A, et al. The 2017 Plasma Roadmap: Low temperature plasma science and technology[J]. Journal of Physics D: Applied Physics, 2017, 50(32): 323001.
[27] 李清泉, 郝玲艳. 沿面介质阻挡放电等离子体及其应用[J]. 高电压技术, 2016, 42(4): 1079-1090.
Li Qingquan, Hao Lingyan, Surface dielectric barrier discharge plasma and its applications[J]. High Voltage Engineering, 2016, 42(4): 1079-1090.
[28] Winter J, Brandenburg R, Weltmann K D. Atmo- spheric pressure plasma jets: an overview of devices and new directions[J]. Plasma Sources Science & Technology, 2015, 24(6): 064001.
[29] Korolev Y D. Low-current discharge plasma jets in a gas flow. application of plasma jets[J]. Russian Journal of General Chemistry, 2015, 85(5): 1311- 1325.
[30] 章程, 邵涛, 严萍. 大气压下纳秒脉冲弥散放电[J]. 科学通报, 2014, 59(20): 1919-1926.
Zhang Cheng, Shao Tao, Yan Ping, Nanosecond- pulse diffuse discharges at atmospheric pressure[J]. Chinese Science Bulletin, 2014, 59(20): 1919-1926.
[31] 李和平, 李果, 王森, 等. 裸露金属电极大气压射频辉光放电研究进展[J]. 科技导报, 2009, 27(5): 81-86.
Li Heping, Li Guo, Wang Sen, et al. Recent progress of atmospheric-pressure glow discharges with bare- metallic electrodes[J]. Science & Technology Review, 2009, 27(5): 81-86.
[32] Ono R. Optical diagnostics of reactive species in atmospheric-pressure nonthermal plasma[J]. Journal of Physics D: Applied Physics, 2016, 49(8): 083001.
[33] Bruggeman P J, Sadeghi N, Schram D C, et al. Gas temperature determination from rotational lines in non-equilibrium plasmas: a review[J]. Plasma Sources Science and Technology, 2014, 23(2): 023001.
[34] 李兴文, 魏文赋, 吴坚, 等. 激光诱导等离子体光学诊断方法研究综述[J]. 高电压技术, 2015, 41(6): 1788-1797.
Li Xingwen, Wei Wenfu, Wu Jian, et al. Review of optical diagnosis methods for the laser produced plasmas[J]. High Voltage Engineering, 2015, 41(6): 1788-1797.
[35] Reuter S, Sousa J S, Stancu G D, et al. Review on VUV to MIR absorption spectroscopy of atmospheric pressure plasma jets[J]. Plasma Sources Science and Technology, 2015, 24(5): 054001.
[36] Fan W L, Sheng Z M, Wang W M, et al. Particle simulation of mode transition in dielectric barrier discharges at different gas pressures[J]. Journal of Physics D: Applied Physics, 2013, 46(47): 475208.
[37] Lu X, Naidis G V, Laroussi M, et al. Guided ionization waves: theory and experiments[J]. Physics Reports, 2014, 540(3): 123-166.
[38] Li C, Teunissen J, Nool M, et al. A comparison of 3D particle, fluid and hybrid simulations for negative streamers[J]. Plasma Sources Science and Techno- logy, 2012, 21(5): 055019.
[39] Kushner M J. Hybrid modelling of low temperature plasmas for fundamental investigations and equipment design[J]. Journal of Physics D: Applied Physics, 2009, 42(19): 194013.
[40] Popov N A. Kinetics of plasma-assisted combustion: effect of non-equilibrium excitation on the ignition and oxidation of combustible mixtures[J]. Plasma Sources Science and Technology, 2016, 25(4): 043002.
[41] 李平, 穆海宝, 喻琳, 等. 低温等离子体辅助燃烧的研究进展、关键问题及展望[J]. 高电压技术, 2015, 41(6): 2073-2083.
Li ping, Mu Haibao, Yu Lin, et al. Progress, key problems and prospect on low temperature plasma assisted combustion[J]. High Voltage Engineering, 2015, 41(6): 2073-2083.
[42] 吴云, 李应红. 等离子体流动控制与点火助燃研究进展[J]. 高电压技术, 2014, 40(7): 2024-2038.
Wu Yun, Li Yinghong. Progress in research of plasma- assisted flow control, ignition and combustion[J]. High Voltage Engineering, 2014, 40(7): 2024-2038.
[43] Chen Q, Li J, Li Y. A review of plasma-liquid interactions for nanomaterial synthesis[J]. Journal of Physics D: Applied Physics, 2015, 48(42): 424005.
[44] Smoluch M, Mielczarek P, Silberring J. Plasma-based ambient ionization mass spectrometry in bioanaly- tical sciences[J]. Mass Spectrometry Reviews, 2015, 35(1): 22-34.
[45] Keidar M. Plasma for cancer treatment[J]. Post Communist Economies, 2015, 24(3): 033001.
[46] Woedtke T V, Reuter S, Masur K, et al. Plasmas for medicine[J]. Physics Reports, 2013, 530(4): 291-320.
[47] Weltmann K D, Polak M, Masur K, et al. Plasma processes and plasma sources in medicine[J]. Contri- butions to Plasma Physics, 2012, 52(7): 644-654.
[48] Park G, Park S, Choi M Y, et al. Atmospheric- pressure plasma sources for biomedical appli- cations[J]. Plasma Sources Science and Technology, 2012, 21(4): 043001.
[49] Kreider W, Crum L A, Bailey M R, et al. Modelling of atmospheric pressure plasmas for biomedical applications[J]. Journal of Physics D: Applied Physics, 2011, 44(5): 053001.
[50] Ehlbeck J, Schnabel U, Polak M, et al. Low temper- ature atmospheric pressure plasma sources for microbial decontamination[J]. Journal of Physics D: Applied Physics, 2011, 44(1): 013002.
[51] Kong M G, Kroesen G, Morfill G, et al. Plasma medicine: an introductory review[J]. New Journal of Physics, 2009, 11(11): 115012.
[52] Thirumdas R, Sarangapani C, Annapure U S. Cold plasma: a novel non-thermal technology for food processing[J]. Food Biophysics, 2015, 10(1): 1-11.
[53] Surowsky B, Schlüter O, Knorr D. Interactions of Non-Thermal Atmospheric Pressure Plasma with Solid and Liquid Food Systems: A Review[J]. Food Engineering Reviews, 2015, 7(2): 1-27.
[54] Chizoba Ekezie F G, Sun D W, Cheng J H. A review on recent advances in cold plasma technology for the food industry: current applications and future trends[J]. Trends in Food Science & Technology, 2017, doi:10.1016/j.tifs.2017.08.007
[55] Liao X, Liu D, Xiang Q, et al. Inactivation mechanisms of non-thermal plasma on microbes: A review[J]. Food Control, 2017, 75: 83-91.
[56] 卢新培. 等离子体射流及其医学应用[J]. 高电压技术, 2011, 37(6): 1416-1425.
Lu Xinpei. Plasma jets and their biomedical application[J]. High Voltage Engineering, 2011, 37(6): 1416-1425.
[57] 张晓星, 肖焓艳, 黄杨珏. 低温等离子体处理SF 6 废气综述[J]. 电工技术学报, 2016, 31(24): 17-24.
Zhang Xiaoxing, Xiao Hanyan, Huang Yangyu. A review of degradation of SF 6 waste by low temper- ature plasma[J]. Transactions of China Electro- technical Society, 2016, 31(24): 17-24.
[58] Veerapandian S, Leys C, De Geyter N, et al. Abatement of VOCs using packed bed non-thermal plasma reactors: a review[J]. Catalysts, 2017, 7(4): 113.
[59] Whitehead J C. Plasma-catalysis: the known knowns, the known unknowns and the unknown unknowns[J]. Journal of Physics D: Applied Physics, 2016, 49(24): 243001.
[60] Magureanu M, Mandache N B, Parvulescu V I. Degradation of pharmaceutical compounds in water by non-thermal plasma treatment[J]. Water Research, 2015, 81(11): 124-136.
[61] Samukawa S, Hori M, Rauf S, et al. The 2012 plasma roadmap[J]. Journal of Physics D:Applied Physics, 2012, 45(25): 253001.
[62] Penkov O V, Khadem M, Lim W S, et al. A review of recent applications of atmospheric pressure plasma jets for materials processing[J]. Journal of Coatings Technology and Research, 2015, 12(2): 225-235.
[63] Pappas D. Status and potential of atmospheric plasma processing of materials[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 2011, 29(2): 020801-020801-17. |