[1] 徐春明, 杨朝合. 石油炼制工程[M]. 4版. 北京: 石油工业出版社, 2009.
[2] 任文坡, 李雪静. 渣油加氢技术应用现状及发展前景[J]. 化工进展, 2013, 32(5): 1006-1013.
Ren Wenpo, Li Xuejing. Application and development of residuum hydroprocessing technologies[J]. Chemical Industry and Engineering Progress, 2013, 32(5): 1006-1013.
[3] 李雪静. 世界能源格局调整与炼油工业发展动向[J]. 石化技术与应用, 2015, 3(1): 1-9.
Li Xuejing. Development trend of oil refining industry and China’s countermeasures in the adjust- ment of world energy structure[J]. Petrochemical Technology and Application, 2015, 3(1): 1-9.
[4] 聂红, 杨清河, 戴立顺, 等. 重油高效转化关键技术的开发及应用[J]. 石油炼制与化工, 2012, 43(1): 1-6.
Nie Hong, Yang Qinghe, Dai Lishun, et al. Deve- lopment and commercial application of key technology for efficient conversion of heavy oil[J]. Petroleum Processing and Petrochemicals, 2012, 43(1): 1-6.
[5] 李大东. 加氢处理工艺与工程[M]. 北京: 中国石化出版社, 2004.
[6] Li D D. Crucial technologies supporting future development of petroleum refining industry[J]. Chinese Journal of Catalysis, 2013, 34(1): 48-60.
[7] 林建飞, 胡大为, 杨清河. 固定床渣油加氢催化剂表面积炭及抑制研究进展[J]. 化工进展, 2015, 34(12): 4229-4237.
Lin Jianfei, Hu Dawei, Yang Qinghe. Research pro- gress of coke deposition and inhibition on fixed bed residue hydrogenating catalysts[J]. Chemical Industry and Engineering Progress, 2015, 34(12): 4229-4237.
[8] Mohan S R, Vicente S, Jorge A, et al. A review of recent advances on process technologies for upgrading of heavy oils and residua[J]. Fuel, 2007, 86(9): 1215- 1231.
[9] 李大东. 炼油工业: 市场的变化与技术对策[J]. 石油学报(石油加工), 2015, 31(2): 208-217.
Li Dadong. Petroleum industry: market changes and technical strategy[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(2): 208-217.
[10] 夏恩冬, 吕倩, 董春明, 等. 固定床渣油加氢处理催化剂发展现状[J]. 精细石油化工进展, 2014, 15(2): 41-45.
Xia Endong, Lü Qian, Dong Chunming, et al. Development of fixed—bed residue hydrotreating catalyst[J]. Advances in Fine Petrochemicals, 2014, 15(2): 41-45.
[11] 吴青. 悬浮床加氢裂化—劣质重油直接深度高效转化技术[J]. 炼油技术与工程, 2014, 44(2): 1-9.
Wu Qing. Suspended-bed hydro cracking process—a deep high-efficiency conversion process in rapid development for processing low-quality heavy oils[J]. Petroleum Refinery Engineering, 2014, 44(2): 1-9.
[12] 方向晨. 国内外渣油加氢处理技术发展现状及分析[J]. 化工进展, 2011, 30(1): 95-104.
Fang Xiangchen. Development of residuum hydropro- cessing technologies[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 95-104.
[13] 李浩, 范传宏, 刘凯祥. 渣油加氢工艺及工程技术探讨[J]. 石油炼制与化工, 2012, 43(6): 31-39.
Li Hao, Fan Chuanhong, Liu Kaixiang. A discussion on residue hydrogenation process and engineering technology[J]. Petroleum Processing and Petro- chemicals, 2012, 43(6): 31-39.
[14] 朱赫礼, 朱宇. 沸腾床渣油加氢技术的工业应用及展望[J]. 石化技术, 2014, 21(2): 58-63.
Zhu Heli, Zhu Yu. Industrial applications and prediction of the ebullated bed hydrogenation tech- nology for residual oil[J]. Petrochemical Industry Technology, 2014, 21(2): 58-63.
[15] 邵涛, 严萍. 大气压气体放电及其等离子体应用[M]. 北京: 科学出版社, 2015.
[16] 陈思乐, 许桂敏, 穆海宝, 等. 低温等离子体处理柴油机尾气的研究进展[J]. 高压电器, 2016, 52(4): 22-29.
Chen Sile, Xu Guimin, Mu Haibao, et al. Research progress in treatment of diesel engine exhasust by non-thermal plasmas[J]. High Voltage Apparatus, 2016, 52(4): 22-29.
[17] 王爱华. 等离子体协同催化技术处理挥发性有机物的研究[D]. 北京: 北京工业大学, 2015.
[18] 陈曦, 杜鹏, 关清, 等. ICP-MS和ICP-AES用于北京雾霾天气PM2.5来源解析研究[J]. 光谱学与光谱分析, 2015, 35(6): 1724-1729.
Chen Xi, Du Peng, Guan Qing, et al. Application of ICP-MS and ICP-AES for studying on source apportionment of PM2.5 during haze weather in urban Beijing[J]. Spectroscopy and Spectral Analysis, 2015, 35(6): 1724-1729.
[19] 荣命哲, 刘定新, 李美, 等. 非平衡态等离子体的仿真研究现状与新进展[J]. 电工技术学报, 2014, 29(6): 271-282.
Rong Minzhe, Liu Dingxin, Li Mei, et al. Research status and new progress on the numerical simulation of non-equilibrium plasma[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 271-282.
[20] Keller G E, Bhasin M M. Synthesis of ethylene via oxidative coupling of methane[J]. Journal of Catalysis, 1982, 73(1): 9-19.
[21] Kovener G S. Use of an RF plasma for thermal pyrolysis of CH 4 and heavy oils[C]//Proceedings of the 6th International Symposium on Plasma Chemi- stry, Montreal, 1983: 258-263.
[22] Baronnet J M, Lesinki J. Hydropyrolysis of heavy oils in H 2 /CH 4 arc plasma[C]//ISPC-8 Tokyo, 1987: 672-677.
[23] Kubanek G, Munz R J, Gauvin W H. Heavy oil processing in steam and hydrogen plasmas[J]. The Canadian Journal of Chemical Engineering, 1986, 64(5): 803-807.
[24] Gehrmann K, Schmidt H. Pyrolysis of hydrocarbons using a hydrogen plasma[C]//8th World Petroleum Congress, 1971.
[25] Motallebi C, Pernin J F, Amouroux J. Catalytic hydrocracking of heavy hydrocarbon in Plasma spouted bed reactor[C]//ISPC-10, Bochum, 1991: 1-6.
[26] Leuenberger J L, Mohammedi M. Cracking of hydro- carbons in a plasma reactor with high concentration of actived hydrogen: interactions H/CH 3 radicals and effects on hydrocarbons conversion[C]//ISPC-7 Eind- hoven, 1985: 595-600.
[27] Nikravech M, Pernin J F, Lecrivain S, et al. Plasma-fluidized bed hydrocracking process of heavy hydrocarbons[J]. ISPC-9 Pugnochiuso, Italy, 1989: 709-714.
[28] Eliasson B, Hirth M, Kogelschatz U. Ozone synthesis from oxygen in dielectric barrier discharges[J]. Journal of Physics D: Applied Physics, 1987, 20(11): 1421-1437.
[29] Baldur E, Ulrich K. Modeling and applications of silent discharge plasmas[J]. IEEE Transactions on Plasma Science, 1991, 19(2): 309-323.
[30] Ulrich K. Dielectric-barrier discharges: their history, discharge physics and industrial applications[J]. Plasma Chemistry and Plasma Processing, 2003, 23(1): 1-46.
[31] Prieto G, Okumoto M, Shimano K I, et al. Heavy oil conversion by plasma chemical reactors[J]. IEEE-IAS Annual Meeting, Phoenix Arizona, USA, 1999: 1144- 1149.
[32] Prieto G, Okumoto M. Reforming of heavy oil using nonthermal plasma[J]. IEEE Transactions on Industry Applications, 2001, 37(5): 1464-1467.
[33] Prieto G, Okumoto M, Takashima K, et al. A plate-to-plate plasma reactor as a fuel processor for hydrogen-rich gas production[C]//IEEE Industry Applications Conference, 2001, 2: 1099-1102.
[34] Prieto G, Okumoto M, Takashima K, et al. Nonther- mal plasma reactors for the production of light hydrocarbon olefins from heavy oil[J]. Brazilian Journal of Chemical Engineering, 2003, 20(1): 57-61.
[35] Prieto G, Prieto O, Gay C R, et al. Hydrogen pro- duction from residual heavy oil[C]//American Institute of Chemical Engineers (AICHE) Spring National Meeting, San Antonio, 2010.
[36] Taghvaei H, Shirazi M M, Hooshmand N, et al. Experimental investigation of hydrogen production through heavy naphtha cracking in pulsed DBD reactor[J]. Applied Energy, 2012, 98(1): 3-10.
[37] Jahanmiri A, Rahimpour M R, Shirazi M M, et al. Naphtha cracking through a pulsed DBD plasma reactor: effect of applied voltage, pulse repetition frequency and electrode material[J]. Chemical Engineering Journal, 2012, 191(19): 416-425.
[38] Taghvaei H, Jahanmiri A, Rahimpour M R, et al. Hydrogen production through plasma cracking of hydrocarbons: effect of carrier gas and hydrocarbon type[J]. Chemical Engineering Journal, 2013, 226(24): 384-392.
[39] Rahimpour M R, Jahanmiri A, Shirazi M M, et al. Combination of non-thermal plasma and hetero- geneous catalysis for methane and hexadecane co-cracking: effect of voltage and catalyst configure- ation[J]. Chemical Engineering Journal, 2013, 219(7): 245-253.
[40] Hooshmand N, Rahimpour M R, Jahanmiri A, et al. Hexadecane cracking in a hybrid catalytic pulsed dielectric barrier discharge plasma reactor[J]. Industrial and Engineering Chemistry Research, 2013, 52(12): 4443-4449.
[41] Mohammad R K, Barzoki S H R, Yaghmaee M S, et al. Investigation of cracking by cylindrical dielectric barrier discharge reactor on the n-hexadecane as a model compound[J]. IEEE Transactions on Plasma Science, 2011, 39(9): 1807-1813.
[42] Mohammad R K, Khosravi Atieh, Dezhbangooy E, et al. Study on the feasibility of plasma (DBD reactor) cracking of different hydrocarbons (n-hexadecane, lubricating oil, and heavy oil)[J]. IEEE Transactions on Plasma Science, 2014, 42(9): 2213-2220.
[43] Kong C P. Method for cracking hydrocarbon com- positions using a submerged reactive plasma system: US, 5626726[P]. 1997-5.
[44] Kong C P, Nelson O L, Detering A B. Nonthermal plasma systems and methods for natural gas and heavy hydrocarbon co-conversion: US, 6986854B2[P]. 2005-5.
[45] Kong C P, Nelson O L, Detering A B. Methods for natural gas and heavy hydrocarbon co-conversion: US, 7494574B2[P]. 2009-2.
[46] 赵明. 等离子体处理稠油的机理与研究[D]. 青岛: 中国石油大学(华东), 2011.
[47] 凌伟. 介质阻挡放电等离子体作用于稠油的基础实验研究[D]. 青岛: 中国石油大学(华东), 2011.
[48] 于红, 凌伟, 赵明, 等. 介质阻挡放电等离子体与重油反应的研究[J]. 核聚变与等离子体物理, 2012, 32(3): 271-277.
Yu Hong, Ling Wei, Zhao Ming, et al. Reaction of dielectric barrier discharge plasma with crude oil[J]. Nuclear Fusion and Plasma Physics, 2012, 32(3): 271-277.
[49] Hao H G, Wu B S, Yang J L, et al. Non-thermal plasma enhanced heavy oil upgrading[J]. Fuel, 2015, 149: 162-173.
[50] 郝海刚, 吴宝山, 杨勇, 等. 一种提质重质碳氢化合物生产轻质油品的方法及其等离子体加氢反应器: 中国, ZL201210464803. 3[P]. 2013-2.
[51] Gallagher M J, Geiger R, Polevich A, et al. On-board plasma-assisted conversion of heavy hydrocarbons into synthesis gas[J]. Fuel, 2010, 89(6): 1187-1192.
[52] Yan J H, Bo Z, Li X D, et al. Study of mechanism for hexane decomposition with gliding arc gas discharge[J]. Plasma Chemistry and Plasma Processing, 2007, 27(2): 115-126.
[53] Khani M R, Guy E D, Gharibi M, et al. The effects of microwave plasma torch on the cracking of pyrolysis fuel oil feedstock[J]. Chemical Engineering Journal, 2014, 237(1): 169-175.
[54] Gharibi M, Khosravi A, Khani M R, et al. Dielectric barrier discharge plasma torch treatment of pyrolysis fuel oil in presence of methane and ethane[J]. Journal of Electrostatics, 2015, 76: 178-187.
[55] Hueso J L, Rico V J, Cotrino J, et al. Water plasmas for the revalorization of heavy oils and cokes from petroleum refining[J]. Environment Science & Tech- nology, 2009, 43(7): 2557-2562.
[56] Manuel M, María C G, César J S, et al. Transfor- mation of light paraffins in a microwave-induced plasma-based reactor at reduced pressure[J]. Inter- national Journal of Hydrogen Energy, 2010, 35(9): 4111-4122.
[57] Biniwale R B, Mizuno A, Ichikawa M. Hydrogen production by reforming of iso-octane using spray- pulsed injection and effect of non-thermal plasma[J]. Applied Catalysis A, 2004, 276(1-2): 169-177.
[58] Xing Y, Liu Z, Couttenye R A, et al. Processing of hydrocarbons in an AC discharge nonthermal plasma reactor: an approach to generate reducing agents for on-board automotive exhaust gas cleaning[J]. Journal of Catalysis, 2008, 253(1): 28-36.
[59] Xing Y, Liu Z, Couttenye R A, et al. Generation of hydrogen and light hydrocarbons for automotive exhaust gas purification: conversion of n-hexane in a PACT (plasma and catalysis integrated technologies) reactor[J]. Journal of Catalysis, 2007, 250(1): 67-74.
[60] Tu X, Helen J G, Martyn V T, et al. Dry reforming of methane over a Ni/Al 2 O 3 catalyst in a coaxial dielectric barrier discharge reactor[J]. Journal of Physics D: Applied Physics, 2011, 44(27): 274007(1-10).
[61] Tu X, Gallon H J, Whitehead J C. Electrical and spectroscopic diagnostics of a single-stage plasma- catalysis system: effect of packing with TiO 2 [J]. Journal of Physics D: Applied Physics, 2011, 44(48): 482003(1-4).
[62] Gallon H J, Tu X, Twigg M V, et al. Plasma-assisted methane reduction of a NiO catalyst—low temper- ature activation of methane and formation of carbon nanofibres[J]. Applied Catalysis B: Environmental, 2011, 106(3-4): 616-620.
[63] Tu X, Whitehead J C. Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: understanding the synergistic effect at low temperature[J]. Applied Catalysis B Environmental, 2012, 125(33): 439-448.
[64] Helen J G, Tu X, Whitehead J C. Effects of reactor packing materials on H 2 production by CO 2 reforming of CH 4 in a dielectric barrier discharge[J]. Plasma Process Polym, 2012, 9(1): 90-97.
[65] Mei D H, Zhu X B Z, He Y L, et al. Plasma-assisted conversion of CO 2 in a dielectric barrier discharge reactor: understanding the effect of packing materials[J]. Plasma Sources Science and Technology, 2015, 24(1): 015011(1-10).
[66] Kado S, Urasaki K, Sekine Y, et al. Reaction mechanism of methane activation using non- equilibrium pulsed discharge at room temperature[J]. Fuel, 2003, 82(18): 2291-2297.
[67] 丁正方, 方志, 许靖. 四氟化碳含量对大气压Ar等离子体射流放电特性的影响[J]. 电工技术学报, 2016, 31(7): 159-165.
Ding Zhengfang, Fang Zhi, Xu Jing. Influences of CF 4 content on discharge characteristics of argon plasma jet under atmospheric pressure[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(7): 159-165.
[68] Genteno G, Ancheyta J, Alvarez A, et al. Effect of different heavy feedstocks on the deactivation of a commercial of a commercial hydro treating catalyst[J]. Fuel, 2012, 100: 73-79.
[69] Hur Y G, Kim M, Lee D, et al. Hydrocarcking of vacuum residue into lighter fuel oils using nanosheet- structured WS 2 catalyst[J]. Fuel, 2014, 137(4): 237- 244.
[70] 卢新培, 严萍, 任春生, 等. 大气压脉冲放电等离子体的研究现状与展望[J]. 中国科学: 物理学 力学 天文学, 2011, 41(7): 801-815.
Lu Xinpei, Yan Ping, Ren Chunsheng, et al. Review on atmospheric pressure pulsed DC discharge[J]. Science Sinica (Physica Mechanica Astronomica), 2011, 41(7): 801-815.
[71] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3): 685-705.
Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engin- eering, 2016, 42(3): 685-705.
[72] Lotfalipour R, Ghorbanzadeh A M, Mahdian A. Methane conversion by repetitive nanosecond pulsed plasma[J]. Journal of Physics D: Applied Physics, 2014, 47(36): 365201(1-16).
[73] Shao T, Long K H, Zhang C, et al. Experimental study on repetitive unipolar nanosecond-pulse dielectric barrier discharge in air at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 2008, 41(21): 215203(1-8).
[74] 章程, 邵涛, 龙凯华, 等. 大气压空气中纳秒脉冲介质阻挡放电特性分析[J]. 中国电机工程学报, 2010, 30(7): 111-117.
Zhang Cheng, Shao Tao, Long Kaihua, et al. Characteristics of nanosecond-pulse dielectric barrier discharge in atmospheric air[J]. Proceedings of the CSEE, 2010, 30(7): 111-117.
[75] 章程, 邵涛, 龙凯华, 等. 大气压空气中纳秒脉冲介质阻挡放电均匀性的研究[J]. 电工技术学报, 2010, 25(1): 30-36.
Zhang Cheng, Shao Tao, Long Kaihua, et al. Uniform of unipolar nanosecond pulse DBD in atmospheric air[J]. Transactions of China Electrontechnical Society, 2010, 25(1): 30-36.
[76] Shao T, Zhang C, Niu Z, et al. Diffuse discharge, runaway electron, and X-ray in atmospheric pressure air in an inhomogeneous electrical field in repetitive pulsed modes[J]. Applied Physics Letters, 2011, 98(2): 021503(1-3).
[77] 邵慧丽, 邵涛, 章程, 等. 常压单极性纳秒脉冲DBD模式的实验研究[J]. 高压电器, 2012, 48(8): 28-33.
Shao Huili, Shao Tao, Zhang Cheng, et al. Experimental study on mode of dielectric barrier discharge driven by repetitive nanosecond pulses at atmospheric pressure[J]. High Voltage Apparartus, 2012, 48(8): 28-33.
[78] Shao T, Zhang C, Fang Z, et al. A comparative study of water electrodes versus metal electrodes for excitation of nanosecond-pulse homogeneous dielectric barrier discharge in open air[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 3069-3078.
[79] Shao T, Jiang H, Zhang C, et al. Time behaviour of discharge current in case of nanosecond-pulse surface dielectric barrier discharge[J]. Euro-Physics Letters, 2013, 101(4): 45002(1-6).
[80] Zhang C, Shao T, Ma H, et al. Experimental study on conduction current of positive nanosecond-pulse diffuse discharge at atmospheric pressure[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(4): 1304-1314.
[81] 章程, 邵涛, 严萍. 大气压下纳秒脉冲弥散放电[J]. 科学通报, 2014, 59(20): 1919-1926.
Zhang Cheng, Shao Tao, Yan Ping. Nanosecond-pulse diffuse discharges at atmospheric pressure[J]. Chinese Science Bulletin, 2014, 59(20): 1919-1926.
[82] Zhang C, Shao T, Yan P, et al. Nanosecond-pulse gliding discharges between point-to-point electrodes in open air[J]. Plasma Sources Science & Technology, 2014, 23(3): 841-852.
[83] 章程, 马浩, 邵涛, 等. 纳秒脉冲气体放电中逃逸电子束流的研究[J]. 物理学报, 2014, 63(8): 085208(1-7).
Zhang Cheng, Ma Hao, Shao Tao, et al. Runaway electron beams in nanosecond-pulse discharges[J]. Acta Physica Sinica, 2014, 63(8): 085208(1-7).
[84] 周亦骁, 方志, 邵涛. Ar/O 2 和Ar/H 2 O中大气压等离子体射流放电特性的比较[J]. 电工技术学报, 2014, 29(11): 229-238.
Zhou Yixiao, Fang Zhi, Shao Tao. Comparison of discharge characteristics of atmospheric pressure plasma jet in Ar/O 2 and Ar/H 2 O mixtures[J]. Transactions of China Electrontechnical Society, 2014, 29(11): 229-238.
[85] Wang R X, Zhang K, Shen Y, et al. Effect of pulse polarity on the temporal and spatial emission of an atmospheric pressure helium plasma jet[J]. Plasma Sources Science and Technology, 2016, 25(1): 015020(1-7).
[86] Zhang C, Zhou Y, Shao T, et al. Hydrophobic treatment on polymethylmethacrylate surface by nanosecond-pulse DBDs in CF 4 at atmospheric pressure[J]. Applied Surface Science, 2014, 311(9): 468-477.
[87] Wang R X, Zhang C, Liu X, et al. Microsecond pulse driven Ar/CF 4 plasma jet for polymethylmethacrylate surface modification at atmospheric pressure[J]. Applied Surface Science, 2015, 328(6): 509-515.
[88] Shao T, Yang W J, Zhang C, et al. Temporal evolution of atmosphere pressure plasma jets driven by microsecond pulses with positive and negative polarities[J]. Euro Physics Letters, 2014, 107(6): 65004(1-6).
[89] Zhang C, Shao T, Zhou Y X, et al. Effect of O 2 additive on spatial uniformity of atmospheric- pressure helium plasma jet array driven by micro- second-duration pulses[J]. Applied Physics Letters, 2014, 105(4): 044102(1-4).
[90] Shao T, Yang W, Zhang C, et al. Enhanced surface flashover strength in vacuum of polymethylmethacry- late by surface modification using atmospheric- pressure dielectric barrier discharge[J]. Applied Physics Letters, 2014, 105(7): 071607(1-5).
[91] Wang R X, Zhang C, Shen Y, et al. Temporal and spatial profiles of emission intensities in atmospheric pressure helium plasma jet driven by microsecond pulse: experiment and simulation[J]. Journal of Applied Physics, 2015, 118(12): 123303(1-7).
[92] 章程, 周中升, 王瑞雪, 等. 大气压下纳秒脉冲弥散放电对铜的表面处理[J]. 高电压技术, 2015, 41(5): 1458-1465.
Zhang Cheng, Zhou Zhongsheng, Wang Ruixue, et al. Modification of copper surface by nanosecond-pulse diffuse discharges at atmospheric pressure[J]. High Voltage Engineering, 2015, 41(5): 1458-1465.
[93] 王瑞雪, 沈苑, 章程, 等. 基于气体动力学和粒子质量输运的氦等离子体射流仿真[J]. 高电压技术, 2015, 41(9): 2903-2909.
Wang Ruixue, Shen Yuan, Zhang Cheng, et al. Simulation of helium plasma jet based on gas dynamics and species mass transportation[J]. High Voltage Engineering, 2015, 41(9): 2903-2909. |