Abstract:As one of the important factors affecting the secure operation of wind farm, lightning strikes can cause serious damage to wind turbines. In the process of lightning, when the lightning current flows through the wind tower, overvoltage may appear on the three-phase cable and transformer by the coupling effect of electromagnetic field. As a result, the normal operation of wind turbines will be affected. The study built a comprehensive wind turbine model and calculated the level of transient overvoltage in PSCAD. Various ground resistances and two earthing modes were simulated, to observe transient phenomena in wind tower and cable. The calculating results show that the lower ground resistance helps to reduce the overvoltage on the cable but fails to reduce the maximum of the overvoltage on the wind tower. Moreover, earthing mode has great influence on wind turbine system, and each has advantages and disadvantages. At last the case verifies the effectiveness of the lightning protection design when the arrestors were installed. Consequently, a reasonable lightning protection design is applicable according to the calculating results.
[1] Kaldellis J K, Zafirakis D. The wind energy revolution: a short review of a long history[J]. Rene- wable Energy, 2011, 36(7): 1887-1901. [2] 尹明, 王成山, 葛旭波, 等. 中德风电发展的比较与分析[J]. 电工技术学报, 2010, 25(9): 157-162. Yin Ming, Wang Chengshan, Ge Xubo, et al. Com- parison and analysis of wind power development between China and Germany[J]. Transactions of China Electrotechnical Society, 2010, 25(9): 157- 162. [3] 王春雷. 风电机组的防雷与接地[J]. 电源技术应用, 2012(6): 29-31. Wang Chunlei. Lightning protection and grounding design for wind turbine system[J]. Power Technology Application, 2012(6): 29-31. [4] 叶吉强. 风力发电机组防雷设计[J]. 硅谷, 2011(18): 61. Ye Jiqiang. Lightning protection design for wind turbine[J]. Silicon Valley, 2011(18): 61. [5] Mikropoulos P N, Tsovilis T E, Politis Z,et al. Evaluation of fast-front overvoltages arising at a 20/0.4kV distribution transformer[C]. IEEE Medi- terranean Conference on Power Generation, Transmi- ssion Distribution and Energy Conversion, 2010: 1-6. [6] Asuda O, Funabashi T. Transient analysis on wind farm suffered from lightning[C]. International Univer- sities power Engineering Conference, 2004, 1: 202-206. [7] Nguyen T Q, Pham T, Tran T V. Electromagnetic transient simulation of lightning overvoltage in a wind farm[C]. IEEE Electrical Insulation Conference, 2013: 81-84. [8] 余占清, 曾嵘, 王绍安, 等. 配电线路雷电感应过电压仿真计算分析[J]. 高电压技术, 2013, 39(2): 415-422. Yu Zhanqing, Zeng Rong, Wang Shaoan, et al. Simulation calculation and analysis of lightning induced overvolitage on power distribution lines[J]. High Voltage Engineering, 2013, 39(2): 415-422. [9] 刘有菊. 雷电流峰值比率的频谱分析[J]. 保山学院学报, 2011(5): 48-51. Liu Youju. Analyzing spectral frequency of lightning current apex valve rate[J]. Journal of Baoshan Teachers College, 2011(5): 48-51. [10] 王晓辉. 风力发电机组雷电暂态效应的研究[D]. 北京: 北京交通大学, 2010. [11] 陈绍东, 王孝波, 李斌,等. 标准雷电波形的频谱分析及其应用[J]. 气象, 2006, 32(10): 11-19. Chen Shaodong, Wang Xiaobo, Li Bin, et al. Frequency spectrum of standard lightning currents and its application[J]. Meteorological Monthly, 2006, 32(10): 11-19. [12] Sekio S, Otoguro H, Funabashi T. A study on overvoltages in wind tower due to direct lightning stroke[C]. 2012 International Conference on Lightning Protection (ICLP), 2012: 1-6. [13] 赵海翔, 王晓蓉. 风电机组的雷击过电压分析[J]. 电网技术, 2004, 28(4): 27-29. Zhao Haixiang, Wang Xiaorong. Overvoltage analysis of wind turbines due to lightning stroke[J]. Power System Technology, 2004, 28(4): 27-29. [14] 卡兰塔罗夫. 电感计算手册[M]. 北京: 机械工业出版社, 1992. [15] 刘景光. 低压电力电缆的几个电气参数计算及分析[J].电线电缆, 1998(4): 17-19. Liu Jingguang. Calculation and analysis of several electrical parameters of low voltage power cable[J]. Wire and Cable, 1998(4): 17-19. [16] 吴命利, 范瑜. 圆导线内阻抗的数值计算[J]. 电工技术学报, 2004, 19(3): 52-58. Wu Mingli, Fan Yu. Numerical calculation of internal impendence of cylindrical conductors[J]. Transa- ctions of China Electrotechnical Society, 2004, 19(3): 52-58. [17] 王馨. 10kV配电变压器的雷电防护研究[D]. 北京:华北电力大学, 2012. [18] Fernando M A R M, Cooray V. Lightning surges at distribution transformer secondary[C]. IEEE Indus- trial and Information Systems, 2010:532-537. [19] 张桂红, 郭洁, 徐燕飞, 等. 金属氧化物避雷器陡波下模型的准确性分析[J]. 高电压技术, 2007, 33(3): 83-86. Zhang Guihong, Guo Jie, Xue Yanfei, et al. Accuracy of metal oxide surge arrester model under steep-front waves[J]. High Voltage Engineering, 2007, 33(3): 83-86. [20] Magro M C, Giannettoni M, Pinceti P. Validation of ZnO surge arresters model for overvoltage studies[J]. IEEE Transactions on Power Delivery, 2004, 19(4): 1692-1695.