Study on Bridge-Cable Grounding System Based on the Non-decoupling Nodal Admittance Matrix
Xu Xing1, Chen Xiangrong1, Du Zhendong2, Qiu Lifeng2
1. Zhenjiang Provincial Key Laboratory of Electrical Machine Systems College of Electrical Engineering Zhejiang University Hangzhou 310027 China; 2. Zhejiang Huayun Power Engineering Design Consulting Company Hangzhou 310000 China
Abstract:Due to the particularity of the bridge structure, the grounding method of the bridge-cable has become an important factor that determines the safety and reliability of the cross-sea transmission system. In this paper, considering the influence of the overhead installation environment, series impedance matrices and shunt admittance matrices of the bridge-cable system are derived; the non-decoupling form of the matrix is introduced to simplify the calculation of the nodal admittance matrix; the cascade formula of the same order and different order nodal admittance matrix are deduced, a matrix solution method for the steady-state calculation of the bridge-cable system is constructed. For the 220kV bridge-cable project of Zhoudai Bridge, the grounding method is studied. The results show that the maximum induced voltage amplitude of the cable sheath and earth continuity cable can reach 87.15V. The maximum circulating current amplitude of the cable sheath and earth continuity cable can reach 79.57A. The total power loss caused by the circulating current reaches 360.34kW. Connecting the impedance at the cross-bonding joint can effectively reduce the loss, and the loss reduction effect is the best when the impedance phase angle is 60°. The work done provides a new calculation method and engineering application reference for the research on the grounding method of the bridge-cable system.
徐星, 陈向荣, 杜振东, 裘立峰. 基于非解耦节点导纳矩阵的随桥电缆接地方式研究[J]. 电工技术学报, 2021, 36(17): 3664-3674.
Xu Xing, Chen Xiangrong, Du Zhendong, Qiu Lifeng. Study on Bridge-Cable Grounding System Based on the Non-decoupling Nodal Admittance Matrix. Transactions of China Electrotechnical Society, 2021, 36(17): 3664-3674.
[1] 余晓丹, 徐宪东, 陈硕翼, 等. 综合能源系统与能源互联网简述[J]. 电工技术学报, 2016, 31(1): 1-13. Yu Xiaodan, Xu Xiangdong, Chen Shuoyi, et al.A brief review to integrated energy system and energy internet[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 1-13. [2] 杨欢, 赵荣祥, 辛焕海, 等. 海岛电网发展现状与研究动态[J]. 电工技术学报, 2013, 28(11): 95-105. Yang Huan, Zhao Rongxiang, Xin Huanhai, et al.Development and research status of island power systems[J]. Transactions of China Electrotechnical Society, 2013, 28(11): 95-105. [3] 蔡游明,李征,蔡旭.计及控制时间窗内功率波动的风电场群无功电压分层优化控制[J]. 电工技术学报, 2019, 34(6): 1240-1250. Cai Youming, Li Zheng, Cai Xu.Voltage hierarchical optimal control of a wind farm cluster in account of voltage fluctuation in control time window[J]. Transactions of China Electrotechnical Society, 2019, 34(6):1240-1250. [4] Marquez R D, Ledezma O R, Noda N, et al.230kV self-contained oil-filled cable line installed underneath a bridge located in Maracaibo, Venezuela[J]. IEEE Transactions on Power Apparatus and Systems, 1981, 100(7): 3153-3165. [5] 李星, 杨帆, 余晓, 等. 基于内源式电阻抗成像的接地网缺陷诊断逆问题研究[J]. 电工技术学报, 2019, 34(5): 902-909. Li Xing, Yang Fan, Yu Xiao, et al.Research on the inverse problem of grounding grid fault diagnosis based on inner-source EIT[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 902-909. [6] 孟毓, 龚尊. 东海大桥高压电缆工程设计[J]. 华东电力, 2007, 35(3): 62-65. Meng Yu, Gong Zun.Engineering designs for high voltage cable laying along Donghai Bridge[J]. East China Electric Power, 2007, 35(3): 62-65. [7] Benato R, Carlini E M, Di Mario C, et al.Gas insulated transmission lines in railway galleries[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 704-709. [8] Benato R, Mario C D, Koch H.High-capability applications of long gas-insulated lines in structures[J]. IEEE Transactions on Power Delivery, 2007, 22: 619-626. [9] 高俊国, 于平澜, 李紫云, 等. 基于有限元法的电缆金属护套感应电压仿真分析[J]. 高电压技术, 2014, 40(3): 714-720. Gao Junguo, Yu Pinglan, Li Ziyun, et al.Simulation analysis of induced voltage on metal sheath of power cable based on finite element method[J]. High Voltage Engineering, 2014, 40(3): 714-720. [10] Lin Yong, Xu Zheng.Cable sheath loss reduction strategy research based on the coupled line model[J]. IEEE Transactions on Power Delivery, 2015, 30(5): 2303-2311. [11] 刘英, 王磊, 曹晓珑. 双回路电缆护套环流计算及影响因素分析[J]. 高电压技术, 2007, 33(4): 143-146. Liu Ying, Wang Lei, Cao Xiaolong.Calculation of circulating current in sheaths of two-circuit arranged cables and analyses of influencing factors[J]. High Voltage Engineering, 2007, 33(4): 143-146. [12] 杜伯学, 李忠磊, 张锴, 等. 220kV交联聚乙烯电力电缆接地电流的计算与应用[J]. 高电压技术, 2013, 39(5): 1034-1039. Du Boxue, Li Zhonglei, Zhang Kai, et al.Calculation and application of 220kV crosslinked polyethylene power cable grounding current[J]. High Voltage Engineering, 2013, 39(5): 1034-1039. [13] Itoh Y, Nagaoka N.Transient analysis of a crossbonded cable system underneath a bridge[J]. IEEE Transactions on Power Delivery, 1990, 5(2): 527-532. [14] 钱洁. 电力电缆电气参数及电气特性研究[D]. 杭州: 浙江大学, 2013. [15] Schelkunoff S A.The electromagnetic theory of coaxial transmission lines and cylindrical shields[J]. Bell Labs Technical Journal, 2013, 13(4): 532-579. [16] 徐政, 钱洁. 电缆电气参数不同计算方法及其比较[J]. 高电压技术, 2013, 39(3): 689-697. Xu Zheng, Qian Jie.Comparison of different methods for calculating electrical parameters of power cables[J]. High Voltage Engineering, 2013, 39(3): 689-697. [17] Paul C R.Analysis of multiconductor transmission lines[M]. New York: Wiley-IEEE Press, 1994. [18] 赵亮, 王世山, 娄千层, 等. 基于三阈值概率分布的多导体传输线电磁参数特性[J]. 电工技术学报, 2018, 33(8): 1663-1673. Zhao Liang, Wang Shishan, Lou Qianceng, et al.Characteristics of electromagnetic parameters of multiconductor transmission lines based on three-threshold probability distribution[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1663-1673. [19] Weng Hua, Xu Zheng.Numerical harmonic modeling of long coupled transmission lines using matrix series theory and recursive approach[J]. International Journal of Numerical Modelling Electronic Networks Devices & Fields, 2013, 26(3): 225-237. [20] 徐韬, 翁华, 徐政, 等. 高压直流输电非解耦线路模型改进算法[J]. 中国电机工程学报, 2011, 31(7): 71-76. Xu Tao, Weng Hua, Xu Zheng, et al.An improved calculating method for the coupled line model of HVDC transmission[J]. Proceedings of the CSEE, 2011, 31(7): 71-76. [21] 林勇. 耦合线路电气特性分析与软件开发[D]. 杭州: 浙江大学, 2016. [22] GB 50217—2018 电力工程电缆设计规范[S]B 50217—2018 电力工程电缆设计规范[S]. 北京:中国标准出版社, 2018. [23] Gouda O E, Farag A A.Factors affecting the sheath losses in single-core underground power cables with two-points bonding method[J]. International Journal of Electrical & Computer Engineering, 2016, 2(1): 2088-8708. [24] 王雅芳. XLPE电力电缆接地系统与感应环流分析[D]. 杭州: 浙江大学, 2012. [25] 王荣亮, 王浩鸣, 宗红宝, 等. 高压电缆金属护套接地环流平衡抑制方法分析[J]. 电力系统及其自动化学报, 2019, 31(11): 108-114. Wang Rongliang, Wang Haoming, Zong Hongbao, et al.Analysis of suppression method for grounding circular current in metal sheath of high-voltage cable[J]. Proceedings of the CSU-EPSA, 2019, 31(11): 108-114.