Research on Fusion Algorithm of Lightning Strike Trip Warning for Mountain Transmission Lines
Yuan Tao1, Wang Xiaotian1,2, Sima Wenxia1, Sun Potao1, Zhou Fangrong3
1. School of Electrical Engineering Chongqing University Chongqing 400044 China; 2. State Grid Tianjin Electric Power Company Binhai Branch Tianjin 300450 China; 3. Electric Power Research Institute Yunnan Power Grid Co. Ltd Kunming 650217 China
Abstract:Relevant statistics show that lightning strikes are the main reason for the tripping of transmission lines, and the damage is relatively large. Research on lightning trip early warning of the transmission lines can help the power grid operation and maintenance departments to take targeted preventive measures in advance to ensure the safe and stable operation of the power grid. However, the existing line lightning trip early warning technology fails to fully consider the characteristics of regional lightning activities and the physical process of lightning stroke lines, which has the problems of low early warning accuracy and high false alarm rate. Therefore, this paper proposes a transmission line lightning trip early warning algorithm that combines the Monte-Carlo method and the lightning leader fractal model to solve the above problems. The algorithm fully considers the characteristics of lightning activity, the physical process of lightning strike lines and the micro-topography conditions of line corridors. On the one hand, according to the monitoring data of regional lightning activity, the variation law of ground flash frequency with altitude and the cumulative probability distribution function of lightning current amplitude are fitted, and the target distribution samples required by Monte-Carlo method are constructed, so as to simulate the distribution of lightning current amplitude and lightning location in a certain area. On the other hand, the fractal model of lightning leader is used to simulate the physical process of the unification of the randomness and certainty of the development path of lightning leader, which fully considers the influence of micro terrain conditions on the physical process of lightning lines. At the same time, based on the algorithm, the lightning trip-out probability database of transmission lines is constructed, and the lightning trip-out warning system is formed. The specific algorithm flow is as follows: Monte-Carlo method and lightning leader fractal model are combined to simulate and calculate the lightning trip probability of transmission lines with different voltage levels (110 kV, 220 kV, 500 kV) under different lightning current amplitudes and different micro-topography conditions, forming a lightning trip probability database. The input condition is determined by the lightning current amplitude randomly generated by the lightning activity short-term warning system data. According to the input condition and the lightning trip probability database, the lightning trip probability of each lightning is determined. Calculate the lightning trip probability of the line in the next 2 hours in the early warning area, and judge whether to issue a lightning trip warning according to the set lightning trip probability threshold. Finally, the lightning trip early warning system was applied to Yunnan power grid for example verification and early warning performance evaluation. The demonstration application in Yunnan power grid showed that the early warning accuracy rate was 87%, the missed alarm rate was 12%, and the false alarm rate was 7%. The false alarm rate was significantly reduced, which has a good early warning effect and can help relevant power grid departments to make targeted preventive measures in advance, reduce the risk and loss of lightning trip.
[1] 张刘春. ±1100 kV特高压直流输电线路防雷保护[J]. 电工技术学报, 2018, 33(19): 4611-4617. Zhang Liuchun.Lightning protection of ±1 100 kV UHVDC transmission line[J]. Transactions of China Electrotechnical Society, 2018, 33(19): 4611-4617. [2] 曾辉, 孙峰, 李铁, 等. 澳大利亚“9· 28”大停电事故分析及对中国启示[J]. 电力系统自动化, 2017, 41(13): 1-6. Zeng Hui, Sun Feng, Li Tie, et al.Analysis of “9· 28” blackout in South Australia and its enlightenment to China[J]. Automation of Electric Power Systems, 2017, 41(13): 1-6. [3] 黎鹏, 肖盼, 屈莹莹, 等. 带长连续电流多重回击作用下500 kV避雷器温升特性分析[J]. 电工技术学报, 2020, 35(增刊2): 603-611. Li Peng, Xiao Pan, Qu Yingying, et al.Temperature rise characteristics of 500 kV arrester under the action of multiple return-strokes with long continuous current[J]. Transactions of China Electrotechnical Society, 2020, 35(S2): 603-611. [4] 高艳丰, 朱永利, 闫红艳, 等. 基于VMD和TEO的高压输电线路雷击故障测距研究[J]. 电工技术学报, 2016, 31(1): 24-33. Gao Yanfeng, Zhu Yongli, Yan Hongyan, et al.Study on lighting fault locating of high-voltage transmission lines based on VMD and TEO[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 24-33. [5] 林伟芳, 孙华东, 汤涌, 等. 巴西“11·10”大停电事故分析及启示[J]. 电力系统自动化, 2010, 34(7): 1-5. Lin Weifang, Sun Huadong, Tang Yong, et al.Analysis and lessons of the blackout in Brazil power grid on November 10, 2009[J]. Automation of Electric Power Systems, 2010, 34(7): 1-5. [6] 孙华东, 许涛, 郭强, 等. 英国“8·9”大停电事故分析及对中国电网的启示[J]. 中国电机工程学报, 2019, 39(21): 6183-6192. Sun Huadong, Xu Tao, Guo Qiang, et al.Analysis on blackout in Great Britain power grid on August 9th, 2019 and its enlightenment to power grid in China[J]. Proceedings of the CSEE, 2019, 39(21): 6183-6192. [7] 李雍, 李舜, 戴玉松, 等. 超特高压输电线路绕击屏蔽模型及计算方法[J]. 电气技术, 2016, 17(1): 1-5. Li Yong, Li Shun, Dai Yusong, et al.Review on shielding lightning model and calculation method of extra-high voltage and ultra-high voltage transmission lines[J]. Electrical Engineering, 2016, 17(1): 1-5. [8] 李瑞芳, 吴广宁, 曹晓斌, 等. 输电线路雷电绕击率的三维计算方法[J]. 电工技术学报, 2009, 24(10): 134-138. Li Ruifang, Wu Guangning, Cao Xiaobin, et al.Three-dimensional calculation method on shielding failure rate of transmission lines[J]. Transactions of China Electrotechnical Society, 2009, 24(10): 134-138. [9] 袁海燕, 傅正财, 魏本刚, 等. 综合考虑风偏、地形和工作电压的特高压交流线路雷电绕击性能[J]. 电工技术学报, 2009, 24(5): 148-153. Yuan Haiyan, Fu Zhengcai, Wei Bengang, et al.Lightning shielding failure analysis of UHVAC transmission lines based on improved EGM[J]. Transactions of China Electrotechnical Society, 2009, 24(5): 148-153. [10] 李建标. 雷电先导分形模型及线路耐雷性能评估方法的研究[D]. 重庆: 重庆大学, 2012. [11] 司马文霞, 杨庆, 李永福, 等. 输电线路雷电绕击评估方法分析及展望[J]. 高电压技术, 2015, 41(8): 2500-2513. Sima Wenxia, Yang Qing, Li Yongfu, et al.Analysis and prospect of lightning shielding failure evaluation methods of transmission lines[J]. High Voltage Engineering, 2015, 41(8): 2500-2513. [12] Shi Wei, Li Qingmin, Zhang Li.A stepped leader model for lightning including charge distribution in branched channels[J]. Journal of Applied Physics, 2014, 116(10): 103303. [13] 师伟. 雷击特高压输电线路先导连接过程数值模拟研究[D]. 济南: 山东大学, 2015. [14] 谢云云, 薛禹胜, 王昊昊, 等. 电网雷击故障概率的时空在线预警[J]. 电力系统自动化, 2013, 37(17): 44-51. Xie Yunyun, Xue Yusheng, Wang Haohao, et al.Space-time early-warning of power grid fault probability by lightning[J]. Automation of Electric Power Systems, 2013, 37(17): 44-51. [15] 王红斌, 程思, 范伟男, 等. 雷暴活动全闪电定位及空间演变过程分析[J]. 电工技术学报, 2021, 36(2): 373-379. Wang Hongbin, Cheng Si, Fan Weinan, et al.Total lightning location of thunderstorm activities and spatial evolution process analysis[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 373-379. [16] 张博文. 基于雷电定位系统的输电线路实时雷击跳闸概率预测[D]. 成都: 西南交通大学, 2014. [17] 鲍捷, 王昕, 张峰, 等. 基于雷电定位数据驱动的紧密输电通道连续雷击跳闸预警方法[J]. 电网技术, 2022, 46(3): 1194-1205. Bao Jie, Wang Xin, Zhang Feng, et al.Data-driven early warning for continuous lightning trip-out of compact power corridors based on lightning location data[J]. Power System Technology, 2022, 46(3): 1194-1205. [18] 赵芝, 石季英, 袁启海, 等. 输电线路的雷击跳闸概率预测计算新方法[J]. 电力系统自动化, 2015, 39(3): 51-58, 139. Zhao Zhi, Shi Jiying, Yuan Qihai, et al.A new prediction calculation method of transmission lines lightning trip probability[J]. Automation of Electric Power Systems, 2015, 39(3): 51-58, 139. [19] 王伟. 强对流天气下输电线路风偏放电与雷击跳闸风险预警方法研究[D]. 重庆: 重庆大学, 2017. [20] 夏桥. 输电线路雷击实时风险评估及跳闸预警模型研究[D]. 广州: 华南理工大学, 2019. [21] Gu Su, Tang Chongwang, Deng Zhiyong, et al.Lightning trip warning based on GA-BP neural network technology[C]//2020 4th International Conference on HVDC (HVDC), Xi'an, China, 2020: 833-840. [22] 唐古玥. 架空输电线路档距段雷击跳闸预测[J]. 电力大数据, 2021, 24(5): 65-71. Tang Guyue.Lightning trip predictionin span section of overhead transmission line[J]. Power Systems and Big Data, 2021, 24(5): 65-71. [23] 中华人民共和国住房和城乡建设部. 交流电气装置的过电压保护和绝缘配合设计规范: GB/T 50064—2014[S]. 北京: 中国计划出版社, 2014. [24] 晏威, 肖纯, 吴细秀, 等. 基于雷电活动特征的10 kV配电线路雷击跳闸率计算[J]. 高电压技术, 2021, 47(3): 1118-1127. Yan Wei, Xiao Chun, Wu Xixiu, et al.Calculation of lightning trip out rate of 10 kV distribution lines based on lightning activity characteristics[J]. High Voltage Engineering, 2021, 47(3): 1118-1127. [25] 李瑞芳, 吴广宁, 曹晓斌, 等. 雷电流幅值概率计算公式[J]. 电工技术学报, 2011, 26(4): 161-167. Li Ruifang, Wu Guangning, Cao Xiaobin, et al.Formula for probability of lightning current amplitude[J]. Transactions of China Electrotechnical Society, 2011, 26(4): 161-167. [26] 尹丽云, 王灏樾, 金文杰, 等. 低纬高原复杂地形对闪电的影响分析[C]//第35届中国气象学会年会S19雷电物理和防雷新技术——第十六届防雷减灾论坛, 合肥, 2018: 543-554. [27] 王擎, 贾春霞, 刘洪鹏. 汪清油页岩燃烧动力学模型[J]. 中国电机工程学报, 2012, 32(23): 27-31, 146. Wang Qing, Jia Chunxia, Liu Hongpeng.Combustion kinetic model of Wangqing oil shale[J]. Proceedings of the CSEE, 2012, 32(23): 27-31, 146. [28] Ametani A, Kawamura T.A method of a lightning surge analysis recommended in Japan using EMTP[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 867-875. [29] International Electrotechnical Commission.Insulation co-ordination-part 2: application guide: IEC 60071—2: 2018[S]. 2018. [30] 冯杰. 云广±800 kV特高压直流输电线路耐雷性能研究[D]. 重庆: 重庆大学, 2007. [31] Martinez J A, Castro-Aranda F.Lightning performance analysis of overhead transmission lines using the EMTP[J]. IEEE Transactions on Power Delivery, 2005, 20(3): 2200-2210. [32] Li Jianbiao, Yang Qing, Sima Wenxia, et al.A new estimation model of the lightning shielding performance of transmission lines using a fractal approach[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(5): 1712-1723. [33] 伏进. 特高压直流输电线路耐雷性能分析方法研究[D]. 重庆: 重庆大学, 2009. [34] He Jinliang, Tu Youping, Zeng Rong, et al.Numeral analysis model for shielding failure of transmission line under lightning stroke[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 815-822. [35] Peek F W. The law of corona and the dielectric strength of air-IV the mechanism of corona formation and loss[J]. Transactions of the American Institute of Electrical Engineers, 1927, XLVI: 1009-1024. [36] 王建. 输电线路气象灾害风险分析与预警方法研究[D]. 重庆: 重庆大学, 2016.