Broadband Harmonic Oscillation Suppression Strategy for Distribution Network with High Penetration of Distributed Generation based on Magnitude-Frequency Corrector
Li Rong1,2, Li Jianwen1,2, Li Yonggang1,2
1. Yanzhao Electric Power Laboratory of North China Electric Power University Baoding 071003 China 2. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Baoding 071003 China
Abstract:In power systems with high renewable penetration and high power-electronics integration (“dual-high”), multi-modal broadband harmonic oscillations pose a serious threat to secure and stable operation. Station-level shunt-based passive damping methods are independent of source-side topology and parameters, providing stronger targeting capability and greater flexibility. However, existing approaches primarily constrain the phase of the original system impedance, with limited impact on suppressing resonance peak magnitudes. Accordingly, directing particular attention to the magnitude-frequency characteristics of the port impedance, with the explicit objective of attenuating resonance peak magnitudes, could enable strategic reshaping of the system impedance via shunt devices, providing a promising means of mitigating broadband harmonic oscillations caused by the interaction between background harmonics and the impedance network. In “dual-high” systems, multi-modal resonance peaks arise from the coupling of multiple LC passive networks. These peaks correspond to the eigenvalues of the impedance transfer function, and the associated damping coefficients quantitatively characterize the relative strength of the suppression effect. However, damping coefficients are jointly constrained by system structure, electrical parameter distribution, and energy dissipation mechanisms, making it difficult to set a unified value; therefore, they should be determined based on actual operating conditions. Based on a comparative analysis of three commonly used passive oscillation suppression devices, this paper proposes a novel topology—magnitude-frequency corrector (MFC). The port characteristics of the proposed device are complementary to those of a multi-inverter grid-connected system. Proper design of the inductance and capacitance parameters of the MFC, combined with parallel connection at the system’s key nodes, can weaken the broadband inductive characteristics of the original system’s port impedance, thereby suppressing resonance peaks. In alignment with IEC specified electromagnetic compatibility standards for low-voltage distribution networks, a unified quantitative indicator for broadband oscillation analysis is established and adopted as the objective function for MFC parameter optimization. Modal analysis method is used to identify key nodes for oscillation suppression, and Particle Swarm Optimization (PSO) is applied to optimize parameters. Comparison of the system’s frequency response curves before and after MFC integration demonstrates that the MFC effectively suppresses multi-modal resonance peaks. Simulation results confirm that incorporating the shunt MFC enhances the system’s capability to actively suppress harmonic oscillations. Experiments on a multi-inverter grid-connected system further demonstrate the generality and effectiveness of the proposed method in suppressing multi-modal broadband harmonic oscillations in “dual-high” distribution networks. The main contributions and conclusions of this paper are as follows: 1)A unified quantitative indicator for broadband oscillation analysis is established: in low-voltage distribution networks with relatively low even-order harmonic content, if all resonance frequencies are close to even-order harmonics, a damping coefficient of ξ ≥ 0.2 would be sufficient to comply with the harmonic limit requirements for the grid connection of distributed generation. 2)A parameter design method for the MFC targeting suppression of multi-modal resonance peaks is proposed: modal analysis method identifies key nodes for oscillation suppression, and PSO is employed to obtain optimal parameters for improving the system damping. 3)The feasibility of reshaping the system impedance based on port impedance magnitude-frequency characteristics using station-level shunt passive devices is verified: connecting the MFC in parallel at the system’s key nodes effectively suppresses multi-modal resonance peaks, significantly improves system damping, and shifts resonance frequencies, all without affecting fundamental-frequency operation. This enables effective suppression of broadband oscillations induced by the integration of multiple inverters.
李戎, 李建文, 李永刚. 基于幅频校正器的“双高”配电网宽频谐波振荡抑制策略[J]. 电工技术学报, 0, (): 250394-.
Li Rong, Li Jianwen, Li Yonggang. Broadband Harmonic Oscillation Suppression Strategy for Distribution Network with High Penetration of Distributed Generation based on Magnitude-Frequency Corrector. Transactions of China Electrotechnical Society, 0, (): 250394-.
[1] 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2-11. Kang Chongqing, Yao Liangzhong.Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9): 2-11. [2] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191. Zhuo Zhenyu, Zhang Ning, Xie Xiaorong, et al.Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171-191. [3] Zhao Mingquan, Yuan Xiaoming, Hu Jiabing, et al.Voltage dynamics of current control time-scale in a VSC-connected weak grid[J]. IEEE Transactions on Power Systems, 2016, 31(4): 2925-2937. [4] Li Chun.Unstable operation of photovoltaic inverter from field experiences[J]. IEEE Transactions on Power Delivery, 2018, 33(2): 1013-1015. [5] 马宁宁, 谢小荣, 贺静波, 等. 高比例新能源和电力电子设备电力系统的宽频振荡研究综述[J]. 中国电机工程学报, 2020, 40(15): 4720-4732. Ma Ningning, Xie Xiaorong, He Jingbo, et al.Review of wide-band oscillation in renewable and power electronics highly integrated power systems[J]. Proceedings of the CSEE, 2020, 40(15): 4720-4732. [6] 姜齐荣, 王玉芝. 电力电子设备高占比电力系统电磁振荡分析与抑制综述[J]. 中国电机工程学报, 2020, 40(22): 7185-7201. Jiang Qirong, Wang Yuzhi.Overview of the analysis and mitigation methods of electromagnetic oscillations in power systems with high proportion of power electronic equipment[J]. Proceedings of the CSEE, 2020, 40(22): 7185-7201. [7] Sun Jian.Impedance-based stability criterion for grid-connected inverters[J]. IEEE Transactions on Power Electronics, 2011, 26(11): 3075-3078. [8] 陈新, 王赟程, 龚春英, 等. 采用阻抗分析方法的并网逆变器稳定性研究综述[J]. 中国电机工程学报, 2018, 38(7): 2082-2094, 2223. Chen Xin, Wang Yuncheng, Gong Chunying, et al.Overview of stability research for grid-connected inverters based on impedance analysis method[J]. Proceedings of the CSEE, 2018, 38(7): 2082-2094, 2223. [9] 李戎, 李建文, 李永刚, 等. 结合特征根及模态分析法的逆变器多机并网系统谐波扰动响应分析[J]. 电工技术学报, 2024, 39(14): 4519-4534. Li Rong, Li Jianwen, Li Yonggang, et al.Analysis of harmonic disturbance response of multi-inverter grid-connected system combining characteristic root and modal analysis method[J]. Transactions of China Electrotechnical Society, 2024, 39(14): 4519-4534. [10] Wang Xiongfei, Blaabjerg F, Loh P C.Passivity-based stability analysis and damping injection for multiparalleled VSCs with LCL filters[J]. IEEE Transactions on Power Electronics, 2017, 32(11): 8922-8935. [11] Xie Chuan, Li Kai, Zou Jianxiao, et al.Passivity-based stabilization of LCL-type grid-connected inverters via a general admittance model[J]. IEEE Transactions on Power Electronics, 2020, 35(6): 6636-6648. [12] 张东辉, 陈新. 基于阻抗视角的新能源发电系统宽频振荡抑制技术综述[J]. 中国电机工程学报, 2024, 44(24): 9672-9691. Zhang Donghui, Chen Xin.Overview of broadband oscillation mitigation of new energy generation power system based on impedance perspective[J]. Proceedings of the CSEE, 2024, 44(24): 9672-9691. [13] 吴翔宇, 张晓红, 许寅, 等. 微电网(群)宽频振荡分析和抑制研究进展与展望[J]. 电网技术, 2023, 47(9): 3727-3745. Wu Xiangyu, Zhang Xiaohong, Xu Yin, et al.Research progress and prospect of wide-band oscillations analysis and suppression for microgrid(clusters)[J]. Power System Technology, 2023, 47(9): 3727-3745. [14] 高家元, 黄帅, 姜飞, 等. 弱电网下基于比例权重的控制环参数自适应调整并网逆变器稳定性提升方法[J]. 电工技术学报, 2024, 39(24): 7846-7859. Gao Jiayuan, Huang Shuai, Jiang Fei, et al.Stability improvement method of grid-connected inverter based on proportional weight control loop parameters adaptive adjustment under weak grid[J]. Transactions of China Electrotechnical Society, 2024, 39(24): 7846-7859. [15] 杨树德, 李旺, 徐佳, 等. 基于并网电流谐波微分的有源阻尼策略[J]. 电工技术学报, 2023, 38(23): 6305-6317. Yang Shude, Li Wang, Xu Jia, et al.Research on active damping strategy based on the differentiation of injected grid current harmonics[J]. Transactions of China Electrotechnical Society, 2023, 38(23): 6305-6317. [16] 徐健, 曹鑫, 郝振洋, 等. 基于电网谐波电压前馈的虚拟同步整流器电流谐波抑制方法[J]. 电工技术学报, 2022, 37(8): 2018-2029. Xu Jian, Cao Xin, Hao Zhenyang, et al.A harmonic-current suppression method for virtual synchronous rectifier based on feedforward of grid harmonic voltage[J]. Transactions of China Electrotechnical Society, 2022, 37(8): 2018-2029. [17] Harnefors L, Wang Xiongfei, Yepes A G, et al.Passivity-based stability assessment of grid-connected VSCs: an overview[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(1): 116-125. [18] 杨明, 杨倬, 李玉龙, 等. 弱电网下基于电网电压前馈的并网逆变器阻抗重塑控制策略[J]. 电工技术学报, 2024, 39(8): 2553-2566. Yang Ming, Yang Zhuo, Li Yulong, et al.Impedance remodeling control strategy of grid-connected inverter based on feedforward voltage under weak grid[J]. Transactions of China Electrotechnical Society, 2024, 39(8): 2553-2566. [19] 陈杰, 章新颖, 闫震宇, 等. 基于虚拟阻抗的逆变器死区补偿及谐波电流抑制分析[J]. 电工技术学报, 2021, 36(8): 1671-1680. Chen Jie, Zhang Xinying, Yan Zhenyu, et al.Dead-time effect and background grid-voltage harmonic suppression methods for inverters with virtual impedance control[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1671-1680. [20] 谢志为, 陈燕东, 伍文华, 等. 弱电网下多逆变器并网系统的全局高频振荡抑制方法[J]. 电工技术学报, 2020, 35(4): 885-895. Xie Zhiwei, Chen Yandong, Wu Wenhua, et al.A global high-frequency oscillation suppression method for multi-inverter grid-connected system in weak grid[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 885-895. [21] Ding Dong, Liu Jiang, Song Weizhang, et al.Extended application of improved D-D-Σ current control in synchronous inverter cluster considering N times equivalent impedance[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2024, 71(3): 1346-1357. [22] Liu Jiang, Sun Xiangdong, Chen Zechi, et al.A hybrid multiresonances suppression method for nonsynchronous LCL-type grid-connected inverter clusters under weak grid[J]. IEEE Transactions on Power Electronics, 2024, 39(5): 5386-5399. [23] 彭意, 郭春义, 杜东冶. 柔性直流输电的阻抗重塑及中高频振荡抑制方法[J]. 中国电机工程学报, 2022, 42(22): 8053-8063. Peng Yi, Guo Chunyi, Du Dongye.Research on medium and high frequency oscillation suppression approach based on impedance tuning in flexible HVDC system[J]. Proceedings of the CSEE, 2022, 42(22): 8053-8063. [24] 侯延琦, 刘崇茹, 王宇, 等. 柔性直流输电系统高频振荡抑制策略研究[J]. 中国电机工程学报, 2021, 41(11): 3741-3751. Hou Yanqi, Liu Chongru, Wang Yu, et al.Research on the suppression strategy of high-frequency resonance for MMC-HVDC[J]. Proceedings of the CSEE, 2021, 41(11): 3741-3751. [25] Abdel Aleem S H E, Zobaa A F, Abdel Aziz M M. Optimal $C$-type passive filter based on minimization of the voltage harmonic distortion for nonlinear loads[J]. IEEE Transactions on Industrial Electronics, 2012, 59(1): 281-289. [26] Gerçek C Ö, Ermis M, Ertas A, et al.Design, implementation, and operation of a new C-type 2nd harmonic filter for electric arc and ladle furnaces[J]. IEEE Transactions on Industry Applications, 2011, 47(4): 1545-1557. [27] Zou Changyue, Rao Hong, Xu Shukai, et al.Analysis of resonance between a VSC-HVDC converter and the AC grid[J]. IEEE Transactions on Power Electronics, 2018, 33(12): 10157-10168. [28] 张东辉, 陈新, 杨舒婷, 等. 含静止无功补偿装置的光伏电站高频谐振分析及抑制策略研究[J]. 中国电机工程学报, 2023, 43(24): 9580-9594. Zhang Donghui, Chen Xin, Yang Shuting, et al.Analysis of high-frequency resonance and suppression strategy of photovoltaic power plant with static reactive power compensation device[J]. Proceedings of the CSEE, 2023, 43(24): 9580-9594. [29] 张前进, 周林, 李海啸, 等. 考虑SVG补偿装置的大型光伏并网系统振荡分析与抑制[J]. 中国电机工程学报, 2019, 39(9): 2636-2644. Zhang Qianjin, Zhou Lin, Li Haixiao, et al.Oscillation analysis and suppression of large-scale grid-connected photovoltaic system considering SVG equipment[J]. Proceedings of the CSEE, 2019, 39(9): 2636-2644. [30] Wang Shaoyang, Li Yong, Zhang Mingmin, et al.Harmonic resonance suppression with inductive power filtering method: case study of large- scale photovoltaic plant in China[J]. IEEE Transactions on Power Electronics, 2023, 38(5): 6444-6454. [31] 徐文远, 张大海. 基于模态分析的谐波谐振评估方法[J]. 中国电机工程学报, 2005, 25(22): 89-93. Xu Wilsun, Zhang Dahai.A modal analysis method for harmonic resonance assessment[J]. Proceedings of the CSEE, 2005, 25(22): 89-93. [32] 舒万韬, 洪芦诚, 刘宁波, 等. 多逆变器并网谐振特性分析[J]. 中国电机工程学报, 2018, 38(17): 5009-5019, 5298. Shu Wantao, Hong Lucheng, Liu Ningbo, et al.An analysis on resonance characteristics of multi-inverters grid-connected system[J]. Proceedings of the CSEE, 2018, 38(17): 5009-5019, 5298. [33] Pereira M, Retzmann D, Lottes J, et al.SVC PLUS: an MMC STATCOM for network and grid access applications[C] //2011 IEEE Trondheim PowerTech, Trondheim, Norway, 2011: 1-5. [34] Zamani M A, Moghaddasian M, Joorabian M, et al.C-type filter design based on power-factor correction for 12-pulse HVDC converters[C] //2008 34th Annual Conference of IEEE Industrial Electronics, Orlando, FL, USA, 2008: 3039-3044. [35] (美) J.C.达斯. 无源滤波器设计[M]. 于海波, 等译. 北京: 机械工业出版社, 2019. [36] Electromagnetic Compatibility (EMC) - Environment - Compatibility levels for low-frequency conducted disturbances and signalling in public low-voltage power supply systems: DS/EN 61000-2-2: 2002/A2: 2019[S]. Danish Standards, 2019. [37] Electromagnetic compatibility (EMC) -Part 3-15: Limits - Assessment of low frequency electromagnetic immunity and emission requirements for dispersed generation systems in LV network: IEC/TR 61000-3-15[S]. IEC, 2011. [38] 袁晓辉, 王乘, 张勇传, 等. 粒子群优化算法在电力系统中的应用[J]. 电网技术, 2004, 28(19): 14-19. Yuan Xiaohui, Wang Cheng, Zhang Yongchuan, et al.A survey on application of particle swarm optimization to electric power systems[J]. Power System Technology, 2004, 28(19): 14-19. [38] 袁晓辉, 王乘, 张勇传, 等. 粒子群优化算法在电力系统中的应用[J]. 电网技术, 2004, 28(19): 14-19. Yuan Xiaohui, Wang Cheng, Zhang Yongchuan, et al.A survey on application of particle swarm optimization to electric power systems[J]. Power System Technology, 2004, 28(19): 14-19.