Voltage/Power Factor Coordination Control Strategy of Rotary Power Flow Controller Based on Line Impedance Regulation Principle
Jia Jiaoxin1, Wu Weilin1, Shao Chen2, Yan Xiangwu1, Cai Wenchao1, Jiang Zhiyuan1
1. Hebei Provincial Key Laboratory of Distributed Energy Storage and Microgrid North China Electric Power University Baoding 071003 China; 2. College of Mechanical and Electrical Engineering Hebei Agricultural University Baoding 071001 China
Abstract:With strong national policy support and continuous advancements in renewable energy generation technologies, the integration of distributed renewable energy into distribution networks has been increasing annually. This trend has affected the electrical characteristics of the system, including power flow distribution, voltage levels, and short-circuit capacity, leading to power factor deterioration and overvoltage. To achieve integrated control of feeder voltage and power factor in active distribution networks, this paper proposes a coordinated voltage/power factor control strategy for the rotary power flow controller (RPFC) based on the principle of line impedance regulation. Firstly, the topology and steady-state characteristics of the RPFC are analyzed. Based on the RPFC mathematical model, an equivalent model for its steady-state output impedance is developed, representing the RPFC as an impedance model composed of a compensating impedance in series with an internal impedance. By adjusting the phase angles of the RPFC, the impedance relationship between the output voltage and the compensation impedance can be dynamically controlled, allowing the regulation of the compensation impedance and thereby achieving the voltage control at the terminal of the connection point. According to the phase relationship between the output voltage and the line current, the RPFC can operate in three modes of compensation: resistive, capacitive, and resistive-capacitive compensation. In resistive compensation mode, the output voltage phase aligns with the current phase, equivalent to inserting a compensating resistor with adjustable polarity and magnitude in series with the line. In capacitive compensation mode, the output voltage lags the line current by 90°, equivalent to inserting a compensating reactance with adjustable polarity and magnitude in series with the line. In resistive-capacitive compensation mode, the RPFC adjusts both the output voltage magnitude and phase, effectively inserting a compensating impedance with adjustable resistance and reactance. Next, the compensation characteristics of the RPFC in the three modes-resistive, capacitive, and resistive-capacitive-are analyzed. Phasor diagrams for each mode are presented, and expressions for the voltage and power factor are derived. The advantages and disadvantages of each compensation mode are discussed. Then, the mathematical model of the RPFC-connected line is analyzed using dq transformation, and a voltage/power factor control model based on the decoupling characteristics of the RPFC impedance is proposed. In this model, the d-axis component of the line current is regulated by the compensation resistance, while the q-axis component is controlled by the compensation reactance. Accordingly, the control of the line current is decoupled for independent regulation of each element through the RPFC’s compensation impedance. A voltage/power factor decoupling control method is designed. Herein, the equivalent impedance is calculated from the target voltage and power factor values. The impedance is then converted into a rotational angle set point, and zero-error control is achieved through the inner-loop speed control of the RPFC. Finally, simulations and experiments are conducted. The results demonstrate that the RPFC can regulate its output voltage, enabling the output terminal to exhibit resistive or capacitive characteristics. Under varying voltage and power factor set points, the RPFC effectively adjusts the line voltage and power factor to maintain optimal performance. Furthermore, the control error of the RPFC is kept within 1.4%, validating the effectiveness of the proposed strategy for continuous voltage and power factor regulation in active distribution networks.
贾焦心, 吴炜林, 邵晨, 颜湘武, 蔡文超, 江智源. 基于线路阻抗调节原理的旋转潮流控制器电压/功率因数协调控制策略[J]. 电工技术学报, 2025, 40(22): 7418-7430.
Jia Jiaoxin, Wu Weilin, Shao Chen, Yan Xiangwu, Cai Wenchao, Jiang Zhiyuan. Voltage/Power Factor Coordination Control Strategy of Rotary Power Flow Controller Based on Line Impedance Regulation Principle. Transactions of China Electrotechnical Society, 2025, 40(22): 7418-7430.
[1] 黄大为, 王孝泉, 于娜, 等. 计及光伏出力不确定性的配电网混合时间尺度无功/电压控制策略[J]. 电工技术学报, 2022, 37(17): 4377-4389. Huang Dawei, Wang Xiaoquan, Yu Na, et al.Hybrid timescale voltage/var control in distribution network considering PV power uncertainty[J]. Transactions of China Electrotechnical Society, 2022, 37(17): 4377-4389. [2] 张舒文, 郭春义, 赵薇, 等. 水光互补柔性直流外送系统的功率传输能力研究[J/OL]. 中国电机工程学报, 1-13[2025-05-22]. http://kns.cnki.net/kcms/ detail/11.2107.tm.20240829.1325.014.html. Zhang Shuwen, Guo Chunyi, Zhao Wei, et al. Research on the power transmission capability of PV-Hydro complementary MMC-HVDC transmission system[J/OL]. Proceedings of the CSEE, 1-13[2025- 05-22]. http://kns.cnki.net/kcms/detail/11.2107.tm. 20240829.1325.014.html. [3] 王子凌, 周金辉, 陈铭, 等. 计及有载调压的高光伏渗透率配电网储能优化配置[J]. 电力系统及其自动化学报, 2020, 32(8): 123-129, 137. Wang Ziling, Zhou Jinhui, Chen Ming, et al.Optimal configuration of energy storage for high PV permeability distribution network with on-load voltage regulation[J]. Proceedings of the CSU-EPSA, 2020, 32(8): 123-129, 137. [4] 张波, 高远, 王磊, 等. 考虑光伏电源可靠性的配电网无功电压调控策略[J]. 高电压技术, 2023, 49(7): 2775-2784. Zhang Bo, Gao Yuan, Wang Lei, et al.Reactive voltage control strategy of distribution network considering the reliability of photovoltaic power supply[J]. High Voltage Engineering, 2023, 49(7): 2775-2784. [5] 张波, 高远, 李铁成, 等. 考虑光伏电源可靠性的新能源配电网数据驱动无功电压优化控制[J]. 中国电机工程学报, 2024, 44(15): 5934-5947. Zhang Bo, Gao Yuan, Li Tiecheng, et al.Data-driven voltage/var optimization control of active distribution network considering the reliability of photovoltaic power supply[J]. Proceedings of the CSEE, 2024, 44(15): 5934-5947. [6] 杨婧颖, 王武林, 张明敏, 等. 考虑分布式光伏和储能参与的配电网电压分层控制方法[J]. 电力科学与技术学报, 2023, 38(5): 111-120, 215. Yang Jingying, Wang Wulin, Zhang Mingmin, et al.Voltage hierarchical control method of distribution network considering distributed photovoltaic and energy storage[J]. Journal of Electric Power Science and Technology, 2023, 38(5): 111-120, 215. [7] 李翠萍, 东哲民, 李军徽, 等. 配电网分布式储能集群调压控制策略[J]. 电力系统自动化, 2021, 45(4): 133-141. Li Cuiping, Dong Zhemin, Li Junhui, et al.Control strategy of voltage regulation for distributed energy storage cluster in distribution network[J]. Automation of Electric Power Systems, 2021, 45(4): 133-141. [8] 葛少云, 侯亭玉, 吴鸣, 等. 柔性互联配电网分布式电源承载能力分布鲁棒优化模型[J]. 电力系统自动化, 2023, 47(13): 140-148. Ge Shaoyun, Hou Tingyu, Wu Ming, et al.Dis- tributionally robust optimization model of hosting capability for distributed generators in flexible interconnected distribution network[J]. Automation of Electric Power Systems, 2023, 47(13): 140-148. [9] 朱建昆, 高红均, 贺帅佳, 等. 考虑供电能力提升的低压配电网柔性互联规划[J]. 高电压技术, 2024, 50(8): 3545-3559. Zhu Jiankun, Gao Hongjun, He Shuaijia, et al.Flexible interconnection planning of low-voltage station area distribution network considering power supply capacity improvement[J]. High Voltage Engin- eering, 2024, 50(8): 3545-3559. [10] 高聪哲, 黄文焘, 余墨多, 等. 基于智能软开关的主动配电网电压模型预测控制优化方法[J]. 电工技术学报, 2022, 37(13): 3263-3274. Gao Congzhe, Huang Wentao, Yu Moduo, et al.A model predictive control method to optimize voltages for active distribution networks with soft open point[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3263-3274. [11] 季振东, 王亚祥, 李东野, 等. 电力电子变压器参与配电网调压调频的应用研究[J]. 太阳能学报, 2024, 45(6): 182-190. Ji Zhendong, Wang Yaxiang, Li Dongye, et al.Application research of power electronic transformers in frequency/voltage regulation of distribution net- works[J]. Acta Energiae Solaris Sinica, 2024, 45(6): 182-190. [12] 孟潇潇, 邵冰冰, 韩平平, 等. 基于背靠背变流器柔性互联的微网群分层协同恢复控制策略[J]. 中国电机工程学报, 2023, 43(20): 7812-7827. Meng Xiaoxiao, Shao Bingbing, Han Pingping, et al.hierarchical cooperative recovery control strategy for flexible interconnected microgrid cluster based on back-to-back converters[J]. Proceedings of the CSEE, 2023, 43(20): 7812-7827. [13] 于汀, 蒲天骄, 刘广一, 等. 基于柔性直流分区互联的受端城市电网无功电压控制策略[J]. 高电压技术, 2017, 43(7): 2140-2145. Yu Ting, Pu Tianjiao, Liu Guangyi, et al.Reactive power and voltage control strategy of receiving-end urban power grid with flexible DC interconnected between partitions[J]. High Voltage Engineering, 2017, 43(7): 2140-2145. [14] 刘鑫磊, 张犁, 刘淇. 升压型功率因数校正变换器的改进线性自抗扰电压环控制[J]. 电网技术, 2023, 47(12): 5238-5247. Liu Xinlei, Zhang Li, Liu Qi.Modified linear active disturbance rejection control-based voltage-loop control for boost PFC converter[J]. Power System Technology, 2023, 47(12): 5238-5247. [15] Haddadi A M, Kazemi A.Optimal power flow control by rotary power flow controller[J]. Advances in Elec- trical and Computer Engineering, 2011, 11(2): 79-86. [16] 颜湘武, 邵晨, 彭维锋, 等. 基于旋转式潮流控制器的有源配电网柔性合环及紧急功率控制方法[J]. 中国电机工程学报, 2023, 43(16): 6192-6205. Yan Xiangwu, Shao Chen, Peng Weifeng, et al.Flexible loop closing and emergency power control method for active distribution network based on the rotary power flow controller[J]. Proceedings of the CSEE, 2023, 43(16): 6192-6205. [17] 李俊杰, 吴在军, 杨士慧, 等. 交直流混合微电网中电力电子变压器功率控制与模式切换方法[J]. 电力自动化设备, 2020, 40(8): 82-87,110. Li Junjie, Wu Zaijun, Yang Shihui, et al.Power control and mode switching method of power electronic transformer in AC/DC hybrid microgrid[J]. Electric Power Automation Equipment, 2020, 40(8): 82-87, 110. [18] 白迪, 张铁岩, 杨政. 基于可控等效阻抗的能量路由器无功电压控制策略研究[J]. 太阳能学报, 2022, 43(1): 329-334. Bai Di, Zhang Tieyan, Yang Zheng.Research on reactive voltage control strategy of energy routers based on controllable equivalent impedance[J]. Acta Energiae Solaris Sinica, 2022, 43(1): 329-334. [19] 姜昊, 孙毅超, 张艺凡, 等. 集群式岸电能量路由器供能精细化就地管控策略[J]. 电力系统保护与控制, 2024, 52(11): 31-41. Jiang Hao, Sun Yichao, Zhang Yifan, et al.Refined local energy management strategy for clustered shore power energy routers[J]. Power System Protection and Control, 2024, 52(11): 31-41. [20] 颜湘武, 郭燕, 彭维锋, 等. 基于旋转移相变压器的电压源型无功补偿器及其控制策略[J]. 电工技术学报, 2023, 38(16): 4448-4464. Yan Xiangwu, Guo Yan, Peng Weifeng, et al.Voltage source var compensator based on rotary phase shifting transformer and its control strategy[J]. Transactions of China Electrotechnical Society, 2023, 38(16): 4448-4464. [21] 颜湘武, 彭维锋, 邵晨, 等. 基于旋转潮流控制器的用户侧电压调控方法[J]. 电工技术学报, 2023, 38(增刊1): 70-79, 113. Yan Xiangwu, Peng Weifeng, Shao Chen, et al.User side voltage control method based on rotating power flow controller[J]. Transactions of China Electro- technical Society, 2019, 38(S1): 70-79, 113. [22] 邵晨, 颜湘武, 贾焦心, 等. 面向“花瓣型”配电网的旋转潮流控制器两阶段转速功率控制策略[J]. 电工技术学报, 2025, 40(1): 52-63. Shao Chen, Yan Xiangwu, Jia Jiaoxin, et al.Two- stage rotational speed power control strategy of rotating Power flow controller for “petal type” distribution network[J]. Transactions of China Elec- trotechnical Society, 2025, 40(1): 52-63. [23] 贾焦心, 彭维锋, 颜湘武, 等. 基于余弦定理的旋转潮流控制器功率解耦控制方法研究[J]. 电工技术学报, 2023, 38(13): 3425-3435. Jia Jiaoxin, Peng Weifeng, Yan Xiangwu et al. Research on power decoupling control method rotary power flow controller based on cosine law[J]. Transactions of China Electrotechnical Society, 2023, 38(13): 3425-3435.