Abstract:A payoff function model which consists of the control effects and costs that concerned by both players is proposed for the game of Voltage control between provincial and district power grids. The payoff model, in which the weight coefficients reflect each participant’s interesting degree towards control effects and costs, is the function of game institutions, interesting extents of participants towards the related indexes and strategy combinations. The influence of game institutions on calculation methods of payoff function and Nash Equilibrium is investigated to reveal the game mechanism of mismatch problem between the provincial and local grids. The Nash Equilibrium of three different kinds of game institutions is compared and analyzed through the simulation on a real regional power grid. The results show that the key of solving voltage control mismatch problem and making participants’ dominant strategies in accordance with the optimization of the whole power system should be lain in changing the cognition in the interesting degree towards voltage control examining indexes and building a rational cooperative institution.
张勇军, 李启峰, 张锡填. 大电网省地电压调控的博弈收益函数建模[J]. 电工技术学报, 2013, 28(3): 254-260.
Zhang Yongjun, Li Qifeng, Zhang Xitian. Gawe Payoff Function Modeling for Game of Provincial and District Voltage Control in Large-Scale Power Grids. Transactions of China Electrotechnical Society, 2013, 28(3): 254-260.
[1] Ilea V, Bovo C, Merlo M, et al. Reactive power flow optimization in the presence of secondary voltage control[C]. IEEE Power Tech, Bucharest, June 2009. [2] Pan Z Y, Han X S, Yang M. A practical solution method of dynamic reactive power optimization in AVC[C]. International Conference on SPGS, Nanjing, April, 2009. [3] 郭庆来, 孙宏斌, 张伯明, 等. 江苏电网AVC主站系统的研究和实现[J]. 电力系统自动化, 2004, 28(22): 83-87. [4] Corsi S, Pozzi M, Sabelli C, et al. The coordinated automatic voltage control of the Italian transmission grid[J]. IEEE Transactions on Power Systems, 2004, 19(4): 1723-1732. [5] Zhang Yongjun, Ren Zhen. Real-time optimal reactive power dispatch using multi-agent technique [J]. Electric Power Systems Research, 2004, 69(3): 259-265. [6] 赵维兴, 刘明波. 基于近似牛顿方向的多区域无功优化解耦算法[J]. 中国电机工程学报, 2007, 27(25): 18-24. [7] Tanaka K, Oshiro M, Toma S, et al. Decentralized control of voltage in distribution systems by distributed generators[J]. IET GTD, 2010, 4(11): 1251-1260. [8] 丁晓群, 周玲, 陈光宇. 电网自动电压控制(AVC)技术及案例分析[M]. 北京: 机械工业出版社, 2010. [9] 苏辛一, 张雪敏, 何光宇, 等. 互联电网自动电压控制系统协调变量设计[J]. 电力系统自动化, 2009, 33(14): 22-26. [10] 杨银国, 李扬絮, 李立, 等. 广东电网春节期间无功电压调控存在的问题与对策[J]. 电网技术, 2007, 31(2): 135-138. [11] 张勇军, 林建熙, 杨银国. 大电网多级电压调控失配问题分析及其博弈建模[J].电力系统自动化, 2011, 35(21): 34-39. [12] 谭德庆. 多维博弈论[M]. 成都: 西南交通大学出版社, 2006. [13] 熊义杰. 现代博弈论基础[M]. 北京: 国防工业出版社, 2010. [14] 董保民, 土运通, 郭桂霞. 合作博弈论[M]. 北京: 中国市场出版社, 2008. [15] 张勇军, 任震. 电力系统动态无功优化调度的调节代价[J]. 电力系统自动化, 2005, 29(2): 34-38.