Transient Voltage Instability Identification Based on Positive-Feedback Unstable Region Mapped by Power Factor during Load Dynamics
Wang Xiaohui, Dang Chongyang, Liu Junyu, Ding Zewen
Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education School of Electrical Engineering Shandong University Jinan 250061 China
Abstract:New-type modern power systems require the emergency control responding to system transients more than event-records. Hence the identification of voltage instability using the measurable electrical quantities and the positive-feedback mechanism is more adapted to such requirement. However, the conventional and typical criteria of such a kind are derived from Thevenin equivalent circuit. They are possibly difficult to capture the exactly-same measurement consistent to ideal Thevenin equivalence, when they are applied on practical power grids. If the system voltage drops rapidly, these criteria are also prone to invalidity for some intermittent short-periods, causing time-delay of judgement. This paper aimed to promote the performance of the response-driven identification on the transient voltage instability by deriving the criteria from the deduction on essential dynamics. The mechanism of such instability due to load dynamics was found out to be associated with the intrinsic feature of power-recovery in loads. Then the unstable region in mathematics could be formulated by the state variables of loads' equivalent resistance in the differential equations modeling such a power-recovery feature. The positive-feedback characteristics in the unstable region were depicted on the basis of these state variables. The consistency in the changing trend between power factor and these state variables during voltage transients was discussed. The criteria mapping the positive-feedback unstable region with power factor and equivalent power quantities were proposed. The adaptability of the proposed criteria was explored, emphasizing the analysis on why the conventional positive-feedback criteria tend to be invalid in the scenario of rapid voltage-drop. The proposed criteria were validated by the benchmark system, namely China Electric Power Research Institute's Voltage Collapse (CEPRI-VC) system, as well as the ten-thousand-node testing system with 10575 buses in specific. The results confirmed the effectiveness of the proposed positive-feedback criteria mapping the unstable region by power factor. The proposed criteria resulted in the missing alarm rate (MAR) of 0% in both systems. They also resulted in the false alarm rate (FAR) of 8.50% in CEPRI-VC system and 2.38% in the ten-thousand-node testing system, respectively. The performance of the proposed criteria could be promoted furtherly by increasing the parameter of criteria-holding duration threshold and/or decreasing the parameter of voltage-safety threshold. Fig.9 and Fig.15 demonstrated the variation of relevant electrical quantities during transients in case of voltage instability. They indicated the judgement process of the proposed criteria, which were always satisfied even if voltage dropped rapidly. The figures also showed the intermittent failures in the conventional criteria, explaining why they retarded the discrimination speed. This paper reached the following conclusions. The unstable region depicted by the dynamics of equivalent resistance in load model of power recovery can reflect the essential mechanism of transient voltage instability. There exists the consistent variation between power factor and the equivalent load resistance in unstable region of voltage transient instability. Mapping the unstable region with the positive-feedback variation of power factor can facilitate the construction of measurable criteria. The proposed criteria get rid of the constraint of voltage variation speed on the judgement accuracy, demonstrating robustness in case that the voltage drops rapidly.
王晓辉, 党崇阳, 刘峻宇, 丁则文. 功率因数映射负荷正反馈不稳定域的暂态电压失稳判别[J]. 电工技术学报, 2025, 40(17): 5476-5486.
Wang Xiaohui, Dang Chongyang, Liu Junyu, Ding Zewen. Transient Voltage Instability Identification Based on Positive-Feedback Unstable Region Mapped by Power Factor during Load Dynamics. Transactions of China Electrotechnical Society, 2025, 40(17): 5476-5486.
[1] 刘文华, 宋强, 滕乐天, 等. 暂态电压稳定与新型动态无功补偿装置[J]. 电工技术学报, 2007, 22(7): 18-23. Liu Wenhua, Song Qiang, Teng Letian, et al.Transient voltage stability and static synchronous compensator[J]. Transactions of China Electrotechnical Society, 2007, 22(7): 18-23. [2] 杨金洲, 李业成, 熊鸿韬, 等. 基于阻抗的新能源接入的受端电网暂态电压失稳高风险故障快速筛选方法[J]. 电工技术学报, 2024, 39(21): 6746-6758. Yang Jinzhou, Li Yecheng, Xiong Hongtao, et al.A fast screening method for the high-risk faults with transient voltage instability in receiving-end power grids interconnected with new energy based on impedance[J]. Transactions of China Electrotechnical Society, 2024, 39(21): 6746-6758. [3] 冉慧娟, 王治钟, 高本锋, 等. 适用于高压直流输电受端系统的两阶段暂态电压评估方法[J]. 电网技术, 2023, 47(10): 4272-4284. Ran Huijuan, Wang Zhizhong, Gao Benfeng, et al.Two-stage transient voltage evaluation suitable for HVDC receiving systems[J]. Power System Technology, 2023, 47(10): 4272-4284. [4] 杨浩, 伍柏臻, 刘铖, 等. 基于暂态关键特征逻辑推理的复杂电网响应驱动暂态稳定性判别[J]. 电工技术学报, 2024, 39(13): 3943-3955. Yang Hao, Wu Baizhen, Liu Cheng, et al.Response-driven transient stability assessment for complex power grids based on logical reasoning with transient key feature[J]. Transactions of China Electrotechnical Society, 2024, 39(13): 3943-3955. [5] 郑超, 孙华东, 曲仝. 基于广域支路响应的电压失稳主动解列控制[J]. 中国电机工程学报, 2021, 41(22): 7563-7574. Zheng Chao, Sun Huadong, Qu Tong.Active splitting control of voltage instability based on wide area branches' response[J]. Proceedings of the CSEE, 2021, 41(22): 7563-7574. [6] 马富艺龙, 辛焕海, 刘晨曦, 等. 新能源基地柔性直流送出系统小扰动电压支撑强度评估[J]. 电工技术学报, 2023, 38(21): 5758-5770, 5938. Ma Fuyilong, Xin Huanhai, Liu Chenxi, et al.Small-disturbance system voltage support strength assessment method for renewables VSC-HVDC delivery system[J]. Transactions of China Electrotechnical Society, 2023, 38(21): 5758-5770, 5938. [7] 刘乔, 王俊生. 背靠背直流输电故障闭锁后过电压分析和优化[J]. 电气技术, 2024, 25(3): 79-84. Liu Qiao, Wang Junsheng.Analysis and optimization of overvoltage after fault blocking in back-to-back DC transmission[J]. Electrical Engineering, 2024, 25(3): 79-84. [8] 王奕鑫, 唐宇, 叶琳, 等. 多馈入直流系统电压稳定中静态负荷影响的定量分析和评估方法[J]. 电工技术学报, 2024, 39(23): 7379-7393. Wang Yixin, Tang Yu, Ye Lin, et al.Quantitative analysis and evaluation method for the impact of static loads on voltage stability in multi-infeed direct current systems[J]. Transactions of China Electrotechnical Society, 2024, 39(23): 7379-7393. [9] 韩圣泽. 暂态电压稳定评估方法综述[J]. 电工技术, 2023(4): 166-170. Han Shengze.Survey of transient voltage stability evaluation methods[J]. Electric Engineering, 2023(4): 166-170. [10] 詹富均. 基于能量函数法的电力系统暂态电压稳定域研究[D]. 广州: 华南理工大学, 2017. Zhan Fujun.Research on transient voltage stability region of power system based on energy function method[J]. Guangzhou: South China University of Technology, 2017. [11] 刘晔, 沈沉. 交直流混联系统的能量函数构造方法综述与探究[J]. 中国电机工程学报, 2022, 42(8): 2842-2853. Liu Ye, Shen Chen.Review and research on construction methods of energy function for hybrid AC-DC power system[J]. Proceedings of the CSEE, 2022, 42(8): 2842-2853. [12] 孙元章, 王志芳. 负荷恢复模型对电压无功稳定性的影响[J]. 电力系统自动化, 1997, (1): 33-36. Sun Yuanzhang, Wang Zhifang.Dynamic load restoration modeling and its impact on voltage stability[J]. Automation of Electric Power Systems, 1997, (1): 33-36. [13] 王青子, 袁小明. 异步电动机幅相运动方程模型及动态过程机理分析[J]. 中国电机工程学报, 2021, 41(1): 363-373, 425. Wang Qingzi, Yuan Xiaoming.Amplitude-phase motion equation model of induction motor and analysis of dynamic process mechanism[J]. Proceedings of the CSEE, 2021, 41(1): 363-373, 425. [14] 李文俏, 王振树, 李中强. 基于分岔理论的负荷模型对交直流混联系统电压稳定性的影响[J]. 电力自动化设备, 2020, 40(11): 144-149. Li Wenqiao, Wang Zhenshu, Li Zhongqiang.Influence of bifurcation theory based load model on voltage stability of AC/DC hybrid system[J]. Electric Power Automation Equipment, 2020, 40(11): 144-149. [15] Balanathan R, Pahalawaththa N C, Annakkage U D.Modelling induction motor loads for voltage stability analysis[J]. International Journal of Electrical Power & Energy Systems, 2002, 24(6): 469-480. [16] 张文朝, 张博, 潘捷, 等. 基于感应电动机网荷互馈特性的暂态电压失稳机理探析[J]. 电力系统自动化, 2017, 41(7): 8-14. Zhang Wenchao, Zhang Bo, Pan Jie, et al.Mechanism analysis for transient voltage instability based on crossfeed characteristics between power network and load of induction motor[J]. Automation of Electric Power Systems, 2017, 41(7): 8-14. [17] 罗华伟, 吴政球, 戴庆华, 等. 电网戴维南等值参数的快速计算[J]. 中国电机工程学报, 2009, 29(1): 35-39. Luo Huawei, Wu Zhengqiu, Dai Qinghua, et al.Fast computation of thevenin equivalent parameters[J]. Proceedings of the CSEE, 2009, 29(1): 35-39. [18] 吕钦刚. 基于戴维南等值参数解析辨识的中长期电压稳定在线监视[D]. 哈尔滨: 哈尔滨工业大学, 2019.Lü Qingang. On-line monitoring of mid-long term voltage stability based on the analytical identification method of Thevenin equivalent parameters[D]. Harbin: Harbin Institute of Technology, 2019. [19] 郑超, 孙华东, 陈怡君. 基于广域支路响应特征的失稳预判与紧急控制[J]. 中国电机工程学报, 2021, 41(17): 5866-5877. Zheng Chao, Sun Huadong, Chen Yijun.Instability prejudge and emergency control based on the response characteristic of wide-area branches[J]. Proceedings of the CSEE, 2021, 41(17): 5866-5877. [20] 邓晖, 赵晋泉, 吴小辰, 等. 基于受扰电压轨迹的电力系统暂态失稳判别: (一)机理与方法[J]. 电力系统自动化, 2013, 37(16): 27-32, 46. Deng Hui, Zhao Jinquan, Wu Xiaochen, et al.Transient instability detection of power system based on perturbed voltage trajectories part one theory and method[J]. Automation of Electric Power Systems, 2013, 37(16): 27-32, 46. [21] 邓晖, 赵晋泉, 吴小辰, 等. 基于受扰电压轨迹的电力系统暂态失稳判别(二)算例分析[J]. 电力系统自动化, 2013, 37(17): 58-63. Deng Hui, Zhao Jinquan, Wu Xiaochen, et al.Transient instability detection of power system based on perturbed voltage trajectories part two case analysis[J]. Automation of Electric Power Systems, 2013, 37(17): 58-63. [22] 王长江, 姜涛, 陈厚合, 等. 基于相位校正李雅普诺夫指数的电力系统暂态电压稳定评估[J]. 电工技术学报, 2021, 36(15): 3221-3236. Wang Changjiang, Jiang Tao, Chen Houhe, et al.Transient voltage stability assessment of power systems based on phase correction maximum Lyapunov exponent[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3221-3236. [23] 张晓英, 高金, 王琨, 等. 基于电压时间序列的电力系统暂态电压稳定分析[J]. 智慧电力, 2021, 49(3): 51-58. Zhang Xiaoying, Gao Jin, Wang Kun, et al.Transient voltage stability analysis of power system based on voltage time series[J]. Smart Power, 2021, 49(3): 51-58. [24] 薛安成, 周健, 刘瑞煌, 等. 采用多二元表判据的实用暂态电压稳定裕度指标研究[J]. 中国电机工程学报, 2018, 38(14): 4117-4125, 4317. Xue Ancheng, Zhou Jian, Liu Ruihuang, et al.A new practical transient voltage stability margin index based on multiple-two-element notation criterion[J]. Proceedings of the CSEE, 2018, 38(14): 4117-4125, 4317. [25] 郑超, 孙华东, 赵兵. 基于关键支路sBTTC指数幅相相关性的主导稳定形态判别与多级主动控制[J]. 中国电机工程学报, 2022, 42(7): 2474-2486. Zheng Chao, Sun Huadong, Zhao Bing.Dominant stability mode discrimination and multilevel stability control based on amplitude-phase correlation of critical branch's sBTTC index[J]. Proceedings of the CSEE, 2022, 42(7): 2474-2486. [26] 汤涌, 仲悟之, 孙华东, 等. 电力系统电压稳定机理研究[J]. 电网技术, 2010, 34(4): 24-29. Tang Yong, Zhong Wuzhi, Sun Huadong, et al.Study on mechanism of power system voltage stability[J]. Power System Technology, 2010, 34(4): 24-29. [27] 汤涌, 易俊, 孙华东, 等. 基于功率电流变化关系的电压失稳判别方法[J]. 中国电机工程学报, 2010, 30(28): 7-11. Tang Yong, Yi Jun, Sun Huadong, et al.Voltage instability criterion based on variation relationship of power and current[J]. Proceedings of the CSEE, 2010, 30(28): 7-11. [28] 赵兵, 徐式蕴, 兰天楷, 等. 新型电力系统标准算例(3):电压稳定CSEE-VS[J]. 中国电机工程学报, 2024, 44(21): 8353-8364. Zhao Bing, Xu Shiyun, Lan Tiankai, et al.Benchmark for AC-DC hybrid system with high penetration of renewables (3): voltage stability benchmark CSEE-VS[J]. Proceedings of the CSEE, 2024, 44(21): 8353-8364. [29] 沈一鸣. 基于电网稳态及暂态量测数据的负荷模型参数辨识方法研究[D]. 杭州: 浙江大学, 2022.Shen Yiming. Research on load model parameters identification method based on power system steady-state and transient measurement data[D]. Hangzhou: Zhejiang University, 2022. [30] 国家市场监督管理总局, 国家标准化管理委员会. 电力系统安全稳定导则: GB 38755—2019[S]. 北京: 中国标准出版社, 2019. [31] 国家市场监督管理总局, 国家标准化管理委员会. 电力系统安全稳定计算规范: GB/T 40581—2021[S]. 北京: 中国标准出版社, 2021. [32] 甄永赞, 阮程. 基于代价敏感支持向量机和多变量决策树的分级自适应暂态电压稳定评估[J]. 电网技术, 2024, 48(2): 778-791. Zhen Yongzan, Ruan Cheng.Hierarchical self-adaptation transient voltage stability assessment based on cost-sensitive SVM and multivariate decision tree[J]. Power System Technology, 2024, 48(2): 778-791.