Abstract:Wireless power transfer (WPT) technology provides an effective way to solve the problem of stable power supply for rotating equipment. However, in practical applications, the relative misalignment between the rotating side and the stationary side is inevitable. In the practical application of WPT system, due to the presence of ferrite cores, the misalignment of the coupling mechanism will significantly affect the self-inductance and mutual inductance parameters of the coils, resulting in output power fluctuations and efficiency reduction. In order to enhance the anti-misalignment capability of WPT systems under changes in coil parameters, this paper proposes a detuned WPT system anti-misalignment method that considers changes in coil parameters. The detuned WPT system is constructed using changes in coil self-inductance to counteract the output power fluctuations caused by changes in mutual inductance. Firstly, using the finite element simulation software, the parameter variation laws of the rotary coupling mechanism under axial and radial offsets were summarized. The study found that the self-inductance and mutual inductance of the coupling mechanism have the same trend of change, and the degree of change is similar within a certain offset range. And based on this, the idea of using self-inductance changes to dynamically adjust the degree of system detuning to offset output fluctuations caused by mutual inductance changes was proposed. Secondly, the influence of parameter changes on system operation was obtained through circuit analysis, and the constant voltage output conditions for the degree of receiver detuning and mutual inductance changes were derived, providing a theoretical basis for the coupling mechanism design and compensation parameters optimization. The coupling mechanism design revolves around the number of turns on the secondary side, and the compensation parameters optimization is based on the particle swarm optimization (PSO) algorithm. With the goal of constant output and efficiency improvement, the compensation topology parameters of the inductor-capacitor-capacitor-series (LCC-S) are comprehensively optimized to achieve good axial and radial anti-misalignment capabilities of the rotary WPT system. Finally, a 170 W experimental setup was constructed to validate the effectiveness of the proposed method. The experimental results show that within the range of axial offset ±30 mm and radial offset ±5 mm, the maximum mutual inductance change of the rotary coupling mechanism is 74%, the self-inductance change is 48%, and the coupling coefficient is 0.39 to 0.89. The maximum output voltage fluctuation is only 9.5% (axial) and 2.8% (radial), and the maximum efficiency of the system is 93%. This method utilizes the equilibrium characteristic of the parameter changes for the coupling mechanism itself. Its significant advantages lie in simple and effective structure, no DC-DC converter, no communication and closed-loop control, and a more stable and reliable system. It is particularly suitable for WPT system in harsh environments such as high temperature, high voltage, and high-frequency vibration underground, reducing the failure rate of the system and improving power supply reliability.
贾亚辉, 陈丰伟, 王智慧, 苏玉刚, 李杨. 考虑线圈参数变化的失谐型无线电能传输系统抗偏移方法[J]. 电工技术学报, 2025, 40(12): 3702-3715.
Jia Yahui, Chen Fengwei, Wang Zhihui, Su Yugang, Li Yang. Anti-Misalignment Method of Detuned Wireless Power Transfer System Considering Coil Parameters Variations. Transactions of China Electrotechnical Society, 2025, 40(12): 3702-3715.
[1] 孙远航, 王永松, 孙习武, 等. 航天用导电滑环失效建模与工艺优化研究[J]. 机械工程学报, 2020, 56(16): 1-12. Sun Yuanhang, Wang Yongsong, Sun Xiwu, et al.Research on failure modeling and process opti-mization of transmission conductive slip ring for aerospace[J]. Journal of Mechanical Engineering, 2020, 56(16): 1-12. [2] 张莲, 杨洪杰, 经廷伟, 等. 井下磁耦合无线电能传输系统的全谐振特性分析[J]. 工矿自动化, 2022, 48(2): 83-92. Zhang Lian, Yang Hongjie, Jing Tingwei, et al.Analysis of full resonance characteristics of under-ground magnetic coupling wireless power transfer system[J]. Industry and Mine Automation, 2022, 48(2): 83-92. [3] 苏玉刚, 钱林俊, 刘哲, 等. 水下具有旋转耦合机构的电场耦合无线电能传输系统及参数优化方法[J]. 电工技术学报, 2022, 37(10): 2399-2410. Su Yugang, Qian Linjun, Liu Zhe, et al.Underwater electric-filed coupled wireless power transfer system with rotary coupler and parameter optimization method[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2399-2410. [4] Rouse C D, Cove S R, Salami Y, et al.Three-phase resonant capacitive power transfer for rotary appli-cations[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(1): 160-169. [5] 程志远, 宋晓逸, 吴晓婷, 等. 无线充电系统旋转式电磁耦合器损耗计算及热点温度研究[J]. 电工技术学报, 2024, 39(7): 1932-1942, 1956. Cheng Zhiyuan, Song Xiaoyi, Wu Xiaoting, et al.Loss calculation and hot spot temperature research of rotary electromagnetic coupler in wireless charging system[J]. Transactions of China Electrotechnical Society, 2024, 39(7): 1932-1942, 1956. [6] 程志远, 陈坤, 李东东, 等. 旋转式无线充电系统偏移特性研究[J]. 电工技术学报, 2021, 36(22): 4648-4657. Cheng Zhiyuan, Chen Kun, Li Dongdong, et al.Research on offset characteristics of rotary wireless charging system[J]. Transactions of China Electro-technical Society, 2021, 36(22): 4648-4657. [7] Ji Li, Ge Fuchen, Zhang Chi.Design of wireless power transmission coupling structure based on rotary steerable drilling[J]. IEEE Transactions on Power Electronics, 2023, Design of wireless power transmission coupling structure based on rotary steerable drilling[J]. IEEE Transactions on Power Electronics, 2023, http://ieeexplore.ieee.org/document/10321715. [8] Zhang Hailong, Chen Yafei, Kim D H, et al.Variable inductor control for misalignment tolerance and constant current/voltage charging in inductive power transfer system[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(4): 4563-4573. [9] Zhu Gangwei, Dong Jianning, Grazian F, et al.A parameter recognition-based impedance tuning method for SS-compensated wireless power transfer systems[J]. IEEE Transactions on Power Electronics, 2023, 38(11): 13298-13314. [10] Zhang Renjie, Yuan Huan, Rong Mingzhe, et al.Self-tuning WPT system with constant voltage output under resonance frequency shift[J]. IEEE Transa-ctions on Power Electronics, 2024, 39(1): 1713-1722. [11] 庄廷伟, 姚友素, 袁悦, 等. 基于DDQ/DD耦合机构的强抗偏移电动汽车用无线充电系统[J]. 中国电机工程学报, 2022, 42(15): 5675-5685. Zhuang Tingwei, Yao Yousu, Yuan Yue, et al.A DDQ/DD-coupler-based wireless power transfer system for electric vehicles charging featuring high misalignment tolerance[J]. Proceedings of the CSEE, 2022, 42(15): 5675-5685. [12] 谢文燕, 陈为, 陈庆彬, 等. 双耦合SP-S补偿紧凑型抗偏移WPT系统[J]. 中国电机工程学报, 2024, 44(2): 714-724. Xie Wenyan, Chen Wei, Chen Qingbin, et al.Compact anti-offset WPT system with dual-coupled SP-S compensation[J]. Proceedings of the CSEE, 2024, 44(2): 714-724. [13] 王懿杰, 陆凯兴, 姚友素, 等. 具有强抗偏移性能的电动汽车用无线电能传输系统[J]. 中国电机工程学报, 2019, 39(13): 3907-3917. Wang Yijie, Lu Kaixing, Yao Yousu, et al.An electric vehicle (EV)-oriented wireless power transfer system featuring high misalignment tolerance[J]. Proceedings of the CSEE, 2019, 39(13): 3907-3917. [14] Kim D H, Ahn D.Self-tuning LCC inverter using PWM-controlled switched capacitor for inductive wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3983-3992. [15] Choi J S, Jeong S Y, Choi B G, et al.Air-gap-insensitive IPT pad with ferromagnetic and con-ductive plates[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 7863-7872. [16] Jia Yahui, Wang Zhihui, Tang Chunsen, et al.An efficiency improvement method for the small air gap wireless power transfer system with variable para-meters[J]. IEEE Transactions on Power Electronics, 2023, 38(11): 13443-13453. [17] 陆远方, 黎祎阳, 杨斌, 等. 考虑线圈参数变化的SS型动态无线电能传输系统参数优化设计方法[J]. 电工技术学报, 2022, 37(18): 4537-4547. Lu Yuanfang, Li Yiyang, Yang Bin, et al.Parameter design method for SS compensated dynamic wireless power transfer system considering coils' parameters variations[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4537-4547. [18] Yang Bin, Lu Yuanfang, Peng Yuner, et al.Analysis and design of a T/S compensated IPT system for AGV maintaining stable output current versus air gap and load variations[J]. IEEE Transactions on Power Electronics, 2022, 37(5): 6217-6228. [19] 麦建伟, 曾宪瑞, 刘治钢, 等. 基于S/SP补偿拓扑的强抗偏移感应式无线电能传输系统[J]. 中国电机工程学报, 2023, 43(4): 1525-1536. Mai Jianwei, Zeng Xianrui, Liu Zhigang, et al.An IPT system based on S/SP compensation topology with high misalignment tolerance[J]. Proceedings of the CSEE, 2023, 43(4): 1525-1536. [20] 李争, 唐明磊, 解波, 等. 无线电能传输零电压开关角跟踪和动态电容补偿矩阵复合控制策略[J]. 电工技术学报, 2024, 39(12): 3602-3615. Li Zheng, Tang Minglei, Xie Bo, et al.Composite control strategy of zero voltage switch angle tracking and dynamic capacitance compensation matrix for wireless power transfer[J]. Transactions of China Electrotechnical Society, 2024, 39(12): 3602-3615. [21] 金卓航, 武晋德, 韩晓霞, 等. 无线电能传输系统中零相角频率跟踪策略研究[J]. 中国电机工程学报, 2025, 45(2): 725-736. Jin Zhuohang, Wu Jinde, Han Xiaoxia, et al.Study of zero-phase angle frequency tracking strategy in wire-less power transfer system[J]. Proceedings of the CSEE, 2025, 45(2): 725-736. [22] 贾亚辉, 王智慧, 肖静, 等. 磁耦合无线电能传输系统宽范围零电压开关实现方法[J]. 电工技术学报, 2024, 39(22): 6952-6964. Jia Yahui, Wang Zhihui, Xiao Jing, et al.Imple-mentation method of wide range zero voltage switching in magnetic coupling wireless power transfer system[J]. Transactions of China Electro-technical Society, 2024, 39(22): 6952-6964. [23] Wang Xiaoqiang, Xu Jianping, Leng Minrui, et al.A hybrid control strategy of LCC-S compensated WPT system for wide output voltage and ZVS range with minimized reactive current[J]. IEEE Transactions on Industrial Electronics, 2021, 68(9): 7908-7920. [24] 焦超群, 杨旭, 杨俊峰, 等. 基于多目标优化理论的耦合无关恒压输出型LCC/S补偿感应电能传输系统[J]. 电工技术学报, 2023, 38(24): 6565-6580. Jiao Chaoqun, Yang Xu, Yang Junfeng, et al.Coupling-independent constant-voltage output LCC/S compensation inductive power transfer system based on multi-objective optimization theory[J]. Transa-ctions of China Electrotechnical Society, 2023, 38(24): 6565-6580. [25] Jia Yahui, Zhao Lei, Wang Zhihui, et al.Integrated LCC-LCC topology for WPT system with CC output regarding air gap and load variations[J]. IEEE Transa-ctions on Power Electronics, 2024, 39(10): 11904-11915. [26] 王佩月. WPT系统双向信号并行传输技术与拓扑研究[D]. 重庆: 重庆大学, 2021. Wang Peiyue.Research on parallel transmission technology and topology of bidirectional signals in WPT system[D]. Chongqing: Chongqing University, 2021. [27] Gong Zhaowei, Zhao Lei, Zhang Ningchao, et al.Analysis and design of an air-gap-insensitive hybrid inductive power transfer system with constant voltage output[J]. IEEE Transactions on Power Electronics, 2024, 39(8): 10496-10505. [28] Yao Yousu, Wang Yijie, Liu Xiaosheng, et al.Particle swarm optimization-based parameter design method for S/CLC-compensated IPT systems featuring high tolerance to misalignment and load variation[J]. IEEE Transactions on Power Electronics, 2019, 34(6): 5268-5282.