电工技术学报  2025, Vol. 40 Issue (6): 1685-1694    DOI: 10.19595/j.cnki.1000-6753.tces.240277
电工理论 |
基于动态摩擦因数反演的直线推进电磁能装备的运动特性
赵文月1,2, 闫荣格1,2, 杨庆新3, 王学谦1,2, 赵浩凯1,2
1.省部共建电工装备可靠性与智能化国家重点实验室(河北工业大学) 天津 300401;
2.河北工业大学河北省电磁场与电器可靠性重点实验室 天津 300401;
3.天津理工大学天津市新能源电力变换传输与智能控制重点实验室 天津 300387
Motion Characteristics of Linear Propulsion Electromagnetic Energy Equipment Based on Dynamic Friction Coefficient Inversion
Zhao Wenyue1,2, Yan Rongge1,2, Yang Qingxin3, Wang Xueqian1,2, Zhao Haokai1,2
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300401 China;
2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300401 China;
3. Tianjin Key Laboratory of New Energy Power Conversion Transmission and intelligent Control Tianjin University of Technology Tianjin 300387 China
全文: PDF (7044 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 枢轨间的动态摩擦力是影响轨道式直线推进电磁能装备运动特性的重要因素之一。但在极端电磁热力冲击工作条件下,摩擦因数的实时原位测量极具挑战,因此目前研究中枢轨间的摩擦因数大多采用定常值。为了提高数值模型的计算精度,该文提出基于动态摩擦因数反演的直线推进电磁能装备运动特性研究方法。首先,根据电磁推进实验可观测数据与电枢动力学正演模型,建立基于改进动态粒子群优化算法(DPSO)的枢轨间摩擦因数与轨道电感梯度的反演模型,得到其时空特性。然后,在此基础上建立枢轨瞬态电磁热力耦合有限元模型,分析动态摩擦因数对装备运动特性的影响。最后,通过实验验证该文考虑动态摩擦因数的方法可大大提高有限元模型的计算精度,为进一步对电磁能装备可靠性预测和结构优化设计提供理论参考,并为极端工况下材料特性实时原位测量提供新的解决思路。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵文月
闫荣格
杨庆新
王学谦
赵浩凯
关键词 直线推进电磁能装备动态摩擦因数参数反演动态粒子群优化算法运动特性    
Abstract:In the working process of linear propulsion electromagnetic energy equipment, friction between the armature and rail due to high-speed sliding is one of the important factors affecting its motion characteristics. However, realizing real-time and in-situ friction coefficient measurement is challenging under extreme electromagnetic, thermal, and mechanical shock conditions. Therefore, the friction coefficient between the armature and rails is fixed as the empirical value in the current research. The actual motion characteristics of the armature fail to be accurately captured because the potential impact of its dynamic changes on the performance of the system is ignored. This paper proposes a method based on the dynamic friction coefficient inversion of motion characteristics.
Firstly, a nonlinear mapping relationship between the armature velocity with the armature-rail friction coefficient and the rail inductance gradient during the armature motion is deduced from the observable data measured by the electromagnetic propulsion experiment and the armature kinetics forward model. Then, the inversion model for the armature-rail friction coefficient and rail inductance gradient is established using the improved dynamic particle swarm optimization (DPSO). The computational velocity is corrected in real-time by the measured velocity of the armature to obtain the spatiotemporal characteristics. The friction coefficient between the armature and rails starts to decrease rapidly with increasing armature velocity, then the decreasing trend slows down and finally tends to a stable value.
Then, the model for transient electromagnetic, thermal, and mechanical coupling is established. Motion characteristics of the equipment are analyzed when the friction coefficient is dynamic (DFC) and constant (FFC). Herein, the friction coefficient between the armature and rails is segmented according to velocity, and the parameters of each velocity segment are determined using the nonlinear least squares fitting method. The results show that the dynamic change of the friction coefficient increases the armature current density, magnetic density, and temperature at the same velocity, which greatly affects the temperature of the armature-rail contact surface. A high current density and magnetic induction are necessary to produce enough Lorentz force to overcome the increased friction caused by the dynamic changes in the friction coefficient. Therefore, the simultaneous increase of friction heat and resistance heat causes the temperature difference on the contact surface of the armature rail to increase gradually under DFC and FFC conditions. The temperature difference reaches 522℃ at 0.75 ms.
Finally, an experimental platform for the linear propulsion electromagnetic energy equipment is built to measure the armature velocity and the magnetic induction strength at the rail. Considering the dynamic friction coefficient, the armature velocity and the magnetic induction intensity are close to the measured values, and the calculation accuracy of the model is high, verifying the correctness of the theoretical analysis.
Key wordsLinear propulsion electromagnetic energy equipment    dynamic friction coefficient    parameter inversion    dynamic particle swarm optimization    motion characteristics   
收稿日期: 2024-02-19     
PACS: TM359.4  
基金资助:国家自然科学基金重大研究计划重点项目(92066206)和河北省省级科技计划项目(225676163GH)资助
通讯作者: 闫荣格 女,1969年生,教授,博士生导师,研究方向为工程电磁场与磁技术。E-mail: yanrg@hebut.edu.cn   
作者简介: 赵文月 女,1991年生,博士研究生,研究方向为工程电磁场与磁技术。E-mail: 1205887741@qq.com
引用本文:   
赵文月, 闫荣格, 杨庆新, 王学谦, 赵浩凯. 基于动态摩擦因数反演的直线推进电磁能装备的运动特性[J]. 电工技术学报, 2025, 40(6): 1685-1694. Zhao Wenyue, Yan Rongge, Yang Qingxin, Wang Xueqian, Zhao Haokai. Motion Characteristics of Linear Propulsion Electromagnetic Energy Equipment Based on Dynamic Friction Coefficient Inversion. Transactions of China Electrotechnical Society, 2025, 40(6): 1685-1694.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.240277          https://dgjsxb.ces-transaction.com/CN/Y2025/V40/I6/1685