Abstract:Cross-linked polyethylene (XLPE) has been widely utilized as a high-voltage direct current (HVDC) cable insulation material. However, in the context of the growing demand for extra-high voltage direct current cables that require larger capacity and broader operating temperature ranges, XLPE insulation must address the challenges posed by space charge accumulation and the temperature sensitivity of conductivity, which can lead to electric field distortion. To tackle this issue, graft modification introducing deep trap groups can effectively capture charges, suppress carrier transport, and enhance the DC electrical performance of XLPE. Moreover, through the rational combination of organic functional groups, constructing functional graftable molecules capable of effectively introducing deep charge traps, and subsequently grafting them onto XLPE, results in a graft-modified XLPE insulation material with extremely low temperature sensitivity of electrical conductivity. To investigate the charge transport mechanisms in graft-modified XLPE over a broad field range and explore the regulatory behavior of deep traps introduced by the graft modification on the internal charge in XLPE under varying temperatures and electric fields, this study focuses on two materials: the pristine XLPE before modification and the graft-modified XLPE (GXLPE) developed by our research team, which exhibits excellent DC electrical performance. Tests on the space charge distribution and conductivity current of both materials are conducted over a wide range of electric field strengths and temperatures. The study analyzes how graft modification affects charge transport in XLPE under high electric fields and provides insights into the impact of graft modification on the electrical performance of XLPE from the perspective of charge transport. The space charge distribution test results indicate a severe charge packet migration behavior within XLPE at high electric fields during the stepwise voltage increase, and this behavior occurs at lower threshold field strengths with increasing temperature. With the increasing of the temperature, charge packet migration can be observed at as low as 15 kV/mm at 70℃. In the grafted XLPE, however, the majority of charges remain confined near the electrodes within the specimen, even under high temperature and high field conditions, with very few charges injected into the material's interior, thus preventing high-density charge packet migration. The conductivity current test results show that the conductivity behavior in XLPE generally follows the space charge-limited current regime, transitioning from a charge-free Ohmic region to a trap-limited space charge limited current (TL-SCLC) region, and eventually to a trap-filled space charge limited (TF-SCLC) region under high temperature and high fields. In graft-modified XLPE, only the Ohmic and TL-SCLC regions can be observed due to its high trap density and low carrier mobility, which can prevent traps from becoming fully filled, resulting in the absence of a TF-SCLC region within the tested electric field range. The deep traps formed by graft modification effectively improve the material's spatial charge and conductivity characteristics over a wide field range, inhibiting space charge packet migration and conductivity current. Even under combined electrothermal field conditions of 120 kV/mm, the deep traps are able to efficiently capture and restrain carriers, demonstrating a stable improvement in DC electrical performance.
杨旭, 程功, 张城城, 杨佳明, 李春阳, 赵洪, 王暄. 接枝改性XLPE绝缘材料宽场域下的空间电荷与电导特性[J]. 电工技术学报, 2025, 40(21): 6882-6893.
Yang Xu, Cheng Gong, Zhang Chengcheng, Yang Jiaming, Li Chunyang, Zhao Hong, Wang Xuan. Space Charge and Conductance Characteristics of Grafted XLPE Insulation Material in Wide Field Range. Transactions of China Electrotechnical Society, 2025, 40(21): 6882-6893.
[1] 李盛涛, 王诗航, 杨柳青, 等. 高压电缆交联聚乙烯绝缘的关键性能与基础问题[J]. 中国电机工程学报, 2022, 42(11): 4247-4255. Li Shengtao, Wang Shihang, Yang Liuqing, et al.Important properties and fundamental issues of the crosslinked polyethylene insulating materials used in high-voltage cable[J]. Proceedings of the CSEE, 2022, 42(11): 4247-4255. [2] 赵健康, 赵鹏, 陈铮铮, 等. 高压直流电缆绝缘材料研究进展评述[J]. 高电压技术, 2017, 43(11): 3490-3503. Zhao Jiankang, Zhao Peng, Chen Zhengzheng, et al.Review on progress of HVDC cables insulation materials[J]. High Voltage Engineering, 2017, 43(11): 3490-3503. [3] 周远翔, 赵健康, 刘睿, 等. 高压/超高压电力电缆关键技术分析及展望[J]. 高电压技术, 2014, 40(9): 2593-2612. Zhou Yuanxiang, Zhao Jiankang, Liu Rui, et al.Key technical analysis and prospect of high voltage and extra-high voltage power cable[J]. High Voltage Engineering, 2014, 40(9): 2593-2612. [4] 何金良, 党斌, 周垚, 等. 挤压型高压直流电缆研究进展及关键技术述评[J]. 高电压技术, 2015, 41(5): 1417-1429. He Jinliang, Dang Bin, Zhou Yao, et al.Reviews on research progress and key technology in extruded cables for HVDC transmission[J]. High Voltage Engineering, 2015, 41(5): 1417-1429. [5] Montanari G C, Mazzanti G, Palmieri F, et al.Space- charge trapping and conduction in LDPE, HDPE and XLPE[J]. Journal of Physics D Applied Physics, 2001, 34(18): 2902-2911. [6] 吴晶晶, 陈丽安, 严有祥, 等. ±500 kV高压直流XLPE电缆温度分布及其影响因素研究[J]. 高压电器, 2023, 59(2): 113-119. Wu Jingjing, Chen Li'an, Yan Youxiang, et al.Study on temperature distribution of ±500 kV HVDC XLPE cable and its influencing factors[J]. High Voltage Apparatus, 2023, 59(2): 113-119. [7] 白健, 张亚, 詹陶, 等. 脱气时间对电缆绝缘中交联副产物含量和直流特性的影响[J/OL]. 高压电器, 2024: 1-11[2024-11-07]. http://kns.cnki.net/kcms/detail/61.1127.TM.20240308.1051.002.html. Bai Jian, Zhang Ya, Zhan Tao, et al. Effect of degassing time on byproducts content and DC characteristics of cable insulation[J/OL]. High Voltage Apparatus, 2024: 1-11[2024-11-07]. http://kns.cnki.net/kcms/detail/61.1127.TM.20240308.1051.002.html. [8] Yang Xu, Zhao Hong, Wang Xuan, et al.Modulated electrical performance of cross-linked polyethylene by grafted charge-attracting molecules for high voltage direct current cable insulation[J]. Materials & Design, 2024, 240: 112884. [9] 王凯, 赵新东, 郑海峰, 等. 极性分子的结构异同性对接枝改性交联聚乙烯材料直流电性能的影响[J]. 电工技术学报, 2024, 39(1): 34-44. Wang Kai, Zhao Xindong, Zheng Haifeng, et al.Influence of the structural similarities of polar molecules on DC properties of grafted modified cross- linked polyethylene materials[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 34-44. [10] Yang Xu, Zhao Hong, Zhang Chengcheng, et al.Improved direct current electrical properties of XLPE modified by graftable antioxidant and crosslinking coagent at a wide temperature range[J]. High Voltage, 2024, 9(1): 94-104. [11] 陈向荣, 黄小凡, 王启隆, 等. 电压稳定剂接枝改性对500 kV直流XLPE电缆材料电气性能的影响[J]. 电工技术学报, 2024, 39(1): 23-33. Chen Xiangrong, Huang Xiaofan, Wang Qilong, et al.Effect of voltage stabilizer grafting on electrical properties of 500 kV DC XLPE cable insulation materials[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 23-33. [12] 张雯嘉, 王伟, 袁浩, 等. 接枝聚丙烯电缆绝缘材料的电树枝特性及机理[J]. 电工技术学报, 2024, 39(1): 88-98. Zhang Wenjia, Wang Wei, Yuan Hao, et al.Electrical tree characteristics and mechanism of grafted poly- propylene cable insulation[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 88-98. [13] 王霞, 王陈诚, 孙晓彤, 等. 高温高场强下XLPE及其纳米复合材料电导机制转变的实验研究[J]. 中国电机工程学报, 2016, 36(7): 2008-2017. Wang Xia, Wang Chencheng, Sun Xiaotong, et al.Experimental study on the transference of conduction mechanisms of XLPE and its nano-composite under high temperature and high electrical stress[J]. Pro- ceedings of the CSEE, 2016, 36(7): 2008-2017. [14] 金煜知, 宋柯, 任文军, 等. 极性反转条件下基于双极性载流子-离子混合输运模型的XLPE空间电荷特性研究[J]. 绝缘材料, 2023, 56(6): 66-72. Jin Yuzhi, Song Ke, Ren Wenjun, et al.Study on space charge characteristics of XLPE under polarity reversal based on bipolar carrier-ion mixed transport model[J]. Insulating Materials, 2023, 56(6): 66-72. [15] 崔伯男, 刘帅, 姜泉旭, 等. 直流叠加冲击电压下PEA法空间电荷测量系统的研制[J]. 绝缘材料, 2022, 55(8): 104-112. Cui Bonan, Liu Shuai, Jiang Quanxu, et al.Preparation of PEA method space charge measurement system under DC voltage superimposed impulse voltage[J]. Insulating Materials, 2022, 55(8): 104-112. [16] Ieda M, Nagao M, Hikita M.High-field conduction and breakdown in insulating polymers. Present situ- ation and future prospects[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(5): 934-945. [17] Wang Qiaohua, Yin Yi, Li Zhe, et al.High field conduction behavior of nanocomposite of low-density polyethylene and Ag nanoparticles[C]//2008 Inter- national Symposium on Electrical Insulating Materials (ISEIM 2008), Yokkaichi, Japan, 2008: 303-306. [18] Zhu Xi, Yin Yi, Peng Suman, et al.Mobility-limited charge injection in cross-linked polyethylene under extra high electric field[J]. High Voltage, 2021, 6(5): 782-792. [19] Shen Xin, Wu Jiandong, Li Weikang, et al.Effects of electric field and temperature on charge transport in an LDPE/SiO nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2023, 30(6): 2532-2542. [20] Zhang Chengcheng, Wang Tingting, Sun Weifeng, et al.Grafting of antioxidant onto polyethylene to improve DC dielectric and thermal aging properties[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(2): 541-549. [21] 闫志雨, 赵洪, 韩宝忠, 等. 基于α松弛分析CB/ LDPE纳米复合介质空间电荷特性[J]. 电机与控制学报, 2017, 21(6): 50-58. Yan Zhiyu, Zhao Hong, Han Baozhong, et al.Analysis of the space charge characteristic of CB/LDPE nanocomposites from the view of α relaxation[J]. Electric Machines and Control, 2017, 21(6): 50-58. [22] Wang Shihang, Li Jianying, Li Shengtao.XLPE/h-BN nanocomposites with enhanced DC insulation proper- ties[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29(1): 62-68. [23] 易姝慧, 王亚林, 彭庆军, 等. 温度对交联聚乙烯中的空间电荷积累以及迁移的影响[J]. 中国电机工程学报, 2017, 37(19): 5796-5803, 5857. Yi Shuhui, Wang Yalin, Peng Qingjun, et al.Effect of temperature on charge accumulation and migration in cross-linked polyethylene[J]. Proceedings of the CSEE, 2017, 37(19): 5796-5803, 5857. [24] 朱敏慧, 闵道敏, 高梓巍, 等. 直流电缆用交联聚乙烯绝缘的击穿概率及其尺度效应仿真[J]. 电工技术学报, 2024, 39(4): 1172-1184. Zhu Minhui, Min Daomin, Gao Ziwei, et al.Break- down probability and size effect simulation of XLPE insulation for DC power cables[J]. Transactions of China Electrotechnical Society, 2024, 39(4): 1172-1184. [25] 王启隆, 陈向荣, 贺新钧, 等. 直流和方波电压下有机半导电小分子/硅弹性体纳米复合材料的高温空间电荷特性[J]. 电工技术学报, 2024, 39(19): 6187-6200. Wang Qilong, Chen Xiangrong, He Xinjun, et al.Analysis of high-temperature charge dynamics of organic semiconductor/silicone elastomer nano- composites under DC and square wave voltages[J]. Transactions of China Electrotechnical Society, 2024, 39(19): 6187-6200. [26] Chiguvare Z, Dyakonov V.Trap-limited hole mobility in semiconducting poly(3-hexylthiophene)[J]. Physical Review B, 2004, 70(23): 235207. [27] 雷清泉, 李盛涛. 关于工程电介质中几个经常涉及的问题与思考[J]. 高电压技术, 2015, 41(8): 2473-2480. Lei Qingquan, Li Shengtao.Several important issues and thinking about engineering dielectrics[J]. High Voltage Engineering, 2015, 41(8): 2473-2480. [28] 雷清泉, 刘关宇. 如何理解工程电介质中极化与电导两个基本物理过程及其测量的科学原理与方法[J]. 中国电机工程学报, 2018, 38(23): 6769-6789, 7113. Lei Qingquan, Liu Guanyu.How to understand the two basic physical processes of polarization and conductance in engineering dielectrics and scientific principles and methods of their measurement[J]. Proceedings of the CSEE, 2018, 38(23): 6769-6789, 7113.