Insulation Characteristics and Failure Mechanism of High-Voltage Cables under Different Thermal Aging Temperatures
Duan Yubing1, Han Mingming1, Wang Zhaochen2, Lan Rui2, Li Guochang2
1. Electric Power Research Institute of State Grid Shandong Electric Power Company Jinan 250002 China; 2. Engineering Research Center of High Voltage Insulation System and Advanced Electrotechnical Materials in Shandong Province Institute of Advanced Electrical Materials Qingdao University of Science and Technology Qingdao 266042 China
Abstract:Cross-linked polyethylene (XLPE) high-voltage cables are affected by environmental factors such as temperature, voltage and humidity during operation, resulting in the degradation of the insulation properties of high-voltage cables and the occurrence of aging problems. Temperature is the main factor causing cable aging. When a short circuit occurs in the cable, the temperature of the cable can reach up to 250℃, which seriously affects the insulation characteristics of the cable. At present, the aging problem of high-voltage cables is mainly studied for the insulation state at individual temperatures, and there is a lack of corresponding research reports on the long-term operating characteristics of high-voltage cables at different temperatures. In this paper, the physicochemical and electrical properties of high-voltage cable insulation at different thermal aging temperatures were studied, and the changes of molecular dynamics and internal temperature field of XLPE high-voltage cables were analyzed by combining experimental results with molecular simulation and finite element simulation analysis. Firstly, commercial high-voltage cable insulation material was used to make XLPE insulation layer by melt preparation. The XLPE was placed in ovens with different thermal aging temperatures, and the aging temperatures were set to 140℃, 160℃ and 180℃, respectively. The change patterns of functional groups, dielectric constant, dielectric loss and breakdown strength of XLPE were tested under different aging times, respectively. Secondly, the thermal-oxidative aging mechanism of high-voltage cables was analyzed according to the change pattern of physicochemical and electrical properties of XLPE under different thermal aging temperatures. The results show the deterioration of XLPE molecular chains accelerates the generation of polar functional groups, mainly including carbonyl and carbon-carbon double bonds, with the increase of aging temperature. The insulation performance reaches a critical value when the aging time of the high-voltage cable insulation layer exceeds the failure point of the life, the content of polar groups increases rapidly. The change of microscopic molecular structure leads to the rapid decline of macroscopic electrical properties. The higher the temperature, the faster the decrease of breakdown field strength, and the breakdown field strength decreased to 53.73 kV/mm after aging at 180℃ for 24 h. Finally, the molecular dynamics characteristics of the high-voltage cable are analyzed in combination with molecular simulation and finite element simulation with respect to the variation of the internal temperature field. The free volume rate of XLPE is 12.53%, 13.40%, and 14.07% when the temperature is 140℃, 160℃, and 180℃, respectively. The higher the aging temperature, the higher the free volume of XLPE molecules. The increase in the free volume of XLPE molecules leads to an increase in the space available for the free movement of electrons, a decrease in the resistance to electron movement and an increase in the kinetic energy of the electrons, which exacerbates the degree of damage to the molecular chain. For example, in 2 000 ps, the mean square displacements are 22.43 Å2, 26.57 Å2, and 44.77 Å2 at temperatures of 140℃, 160℃, and 180℃, respectively. According to the variation rules of dielectric constant and dielectric loss at different aging temperatures, the internal temperature of high-voltage cables increases with the increase of dielectric constant and dielectric loss, which plays a positive feedback role in the thermal aging of high-voltage cables.
段玉兵, 韩明明, 王兆琛, 兰锐, 李国倡. 不同热老化温度下高压电缆绝缘特性及失效机理[J]. 电工技术学报, 2024, 39(1): 45-54.
Duan Yubing, Han Mingming, Wang Zhaochen, Lan Rui, Li Guochang. Insulation Characteristics and Failure Mechanism of High-Voltage Cables under Different Thermal Aging Temperatures. Transactions of China Electrotechnical Society, 2024, 39(1): 45-54.
[1] 王国栋, 周凯, 李原, 等. 基于失效时间统计特性的交联聚乙烯电寿命模型修正[J]. 电工技术学报, 2023, 38(4): 1042-1050. Wang Guodong, Zhou Kai, Li Yuan, et al.Modification of cross-linked polyethylene electrical life model based on statistical characteristics of failure time[J]. Transactions of China Electrotechnical Society, 2023, 38(4): 1042-1050. [2] 吴晶晶, 陈丽安, 严有祥, 等. ±500 kV高压直流XLPE电缆温度分布及其影响因素研究[J]. 高压电器, 2023, 59(2): 113-119. Wu Jingjing, Chen Lian, Yan Youxiang, et al.Study on temperature distribution of ±500 kV HVDC XLPE cable and its influencing factors[J]. High Voltage Apparatus, 2023, 59(2): 113-119. [3] 陈向荣, 洪泽林, 朱光宇, 等. 高温下电压稳定剂对交联聚乙烯电树枝化及局部放电特性的影响[J]. 电工技术学报, 2023, 38(3): 577-586. Chen Xiangrong, Hong Zelin, Zhu Guangyu, et al.Effect of voltage stabilizer on electrical treeing and partial discharge characteristics of crosslinked polyethylene at high temperature[J]. Transactions of China Electrotechnical Society, 2023, 38(3): 577-586. [4] 王昊月, 王晓威, 孙茂伦, 等. XLPE电缆绝缘热老化的高压频域介电谱诊断方法[J]. 电工技术学报, 2022, 37(17): 4497-4507. Wang Haoyue, Wang Xiaowei, Sun Maolun, et al.High voltage frequency domain dielectric spectroscopy diagnosis method for thermal aging of XPLE cables[J]. Transactions of China Electrotechnical Society, 2022, 37(17): 4497-4507. [5] Candela R, Gattuso A, Mitolo M, et al.A model for assessing the magnitude and distribution of sheath currents in medium and high-voltage cable lines[J]. IEEE Transactions on Industry Applications, 2020, 56(6): 6250-6257. [6] 陈祎林, 周凯, 林思衍, 等. 短时高热运行对XLPE电缆绝缘聚集态结构及介电性能的影响[J]. 高电压技术, 2023, 49(2): 588-596. Chen Yilin, Zhou Kai, Lin Siyan, et al.Effect of short-term high-temperature operation on the aggregate structure and dielectric properties of XLPE cables insulation[J]. High Voltage Engineering, 2023, 49(2): 588-596. [7] Wei Yanhui, Liu Mingyue, Li Xuejing, et al.Effect of temperature on electric-thermal properties of semi-conductive shielding layer and insulation layer for high-voltage cable[J]. High Voltage, 2021, 6(5): 805-812. [8] 李盛涛, 王诗航, 杨柳青, 等. 高压电缆交联聚乙烯绝缘的关键性能与基础问题[J]. 中国电机工程学报, 2022, 42(11): 4247-4255. Li Shengtao, Wang Shihang, Yang Liuqing, et al.Important properties and fundamental issues of the crosslinked polyethylene insulating materials used in high-voltage cable[J]. Proceedings of the CSEE, 2022, 42(11): 4247-4255. [9] 闫群民, 李欢, 翟双, 等. 不同温度热老化对高压配网交联聚乙烯电缆绝缘表面陷阱参数的影响[J]. 中国电机工程学报, 2020, 40(2): 692-701. Yan Qunmin, Li Huan, Zhai Shuang, et al.Effect of thermal aging at different temperatures on the surface trap parameters of HV-XLPE distribution cable insulation[J]. Proceedings of the CSEE, 2020, 40(2): 692-701. [10] 康佳, 姜磊, 高景晖, 等. 漂浮式风电平台动态海缆用绝缘材料性能研究[J]. 高压电器, 2022, 58(1): 12-17. Kang Jia, Jiang Lei, Gao Jinghui, et al.Study on properties of insulating materials for dynamic submarine cable of floating wind power platform[J]. High Voltage Apparatus, 2022, 58(1): 12-17. [11] 刘刚, 刘斯亮, 金尚儿, 等. 基于理、化、电特性的110 kV XLPE绝缘电缆剩余寿命的综合评估[J]. 电工技术学报, 2016, 31(12): 72-79, 107. Liu Gang, Liu Siliang, Jin Shanger, et al.Comprehensive evaluation of remaining life of 110kV XLPE insulated cable based on physical, chemical and electrical properties[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 72-79, 107. [12] Alghamdi A S, Desuqi R K.A study of expected lifetime of XLPE insulation cables working at elevated temperatures by applying accelerated thermal ageing[J]. Heliyon, 2020, 6(1): e03120. [13] Yang Zhangyong, Li Huan, Duan Yilin, et al.Study on melting characteristics of crystals in thermal aged XLPE cable insulation at elevated temperature[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(12): 16194-16202. [14] Liu Hongjian, Wang Shihang, Li Shengtao, et al.Effect of thermo-oxidative aging on thermal elongation performance of XLPE insulation for high-voltage cables[J]. Polymer Degradation and Stability, 2023, 210: 110291. [15] Boukezzi L, Boubakeur A.Effect of thermal aging on the electrical characteristics of XLPE for HV cables[J]. Transactions on Electrical and Electronic Materials, 2018, 19(5): 344-351. [16] Zhang Yi, Wu Zaijun, He Jiahong, et al.Electrical treeing behaviours in cross-linked polyethylene cables after thermal ageing[J]. High Voltage, 2023, 8(4): 749-759. [17] Nadolny Z.Electric field distribution and dielectric losses in XLPE insulation and semiconductor screens of high-voltage cables[J]. Energies, 2022, 15(13): 4692. [18] Montsinger V M.Loading transformers by temperature[J]. Transactions of the American Institute of Electrical Engineers, 1930, 49(2): 776-790. [19] Li Guochang, Wang Zhaochen, Lan Rui, et al.The lifetime prediction and insulation failure mechanism of XLPE for high-voltage cable[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2023, 30(2): 761-768. [20] 孙建宇, 陈绍平, 沙菁?, 等. 电缆用交联聚乙烯热老化寿命评估和预测[J]. 电机与控制学报, 2022, 26(6): 31-39. Sun Jianyu, Chen Shaoping, Sha Jingjie, et al.Evaluation and prediction of thermal aging life of XLPE for cables[J]. Electric Machines and Control, 2022, 26(6): 31-39. [21] 沈智飞, 柳宝坤, 王国栋, 等. 10 kV交联聚乙烯电缆加速电老化特性研究[J]. 绝缘材料, 2021, 54(8): 60-66. Shen Zhifei, Liu Baokun, Wang Guodong, et al.Accelerated electrical ageing characteristics of 10 kV XLPE cable[J]. Insulating Materials, 2021, 54(8): 60-66. [22] 赵薇, 张振鹏, 胡列翔, 等. 500 kV海缆接头绝缘恢复对XLPE工频击穿和晶相结构的影响[J]. 高电压技术, 2019, 45(11): 3437-3444. Zhao Wei, Zhang Zhenpeng, Hu Liexiang, et al.Effects of 500 kV submarine cable factory joint insulation recovery on power frequency breakdown and crystalline morphology of XLPE[J]. High Voltage Engineering, 2019, 45(11): 3437-3444. [23] 董芸滋, 高嫄, 李秀峰, 等. 交联度对交联聚乙烯/有机化蒙脱土纳米复合材料拉伸性能和介电性能的影响[J]. 电工技术学报, 2023, 38(5): 1154-1165. Dong Yunzi, Gao Yuan, Li Xiufeng, et al.Effect of crosslinking degree on tensile and dielectric properties of cross-linked polyethylene/organic montmorillonite nanocomposite material[J]. Transactions of China Electrotechnical Society, 2023, 38(5): 1154-1165. [24] 赵健康, 赵鹏, 陈铮铮, 等. 高压直流电缆绝缘材料研究进展评述[J]. 高电压技术, 2017, 43(11): 3490-3503. Zhao Jiankang, Zhao Peng, Chen Zhengzheng, et al.Review on progress of HVDC cables insulation materials[J]. High Voltage Engineering, 2017, 43(11): 3490-3503. [25] Lane J M D, Moore N W. Molecular and kinetic models for high-rate thermal degradation of polyethylene[J]. The Journal of Physical Chemistry A, 2018, 122(16): 3962-3970. [26] Paajanen A, Vaari J, Verho T.Crystallization of cross-linked polyethylene by molecular dynamics simulation[J]. Polymer, 2019, 171: 80-86. [27] 李亚莎, 花旭, 代亚平, 等. 外电场下交联聚乙烯电介质材料分子结构变化及其电老化微观机理研究[J]. 原子与分子物理学报, 2019, 36(3): 413-420. Li Yasha, Hua Xu, Dai Yaping, et al.Study on molecular structure change and micro-mechanism of electrical aging of XLPE dielectric materials under external electric fields[J]. Journal of Atomic and Molecular Physics, 2019, 36(3): 413-420. [28] Zhang Yiyi, Chen Xiaoming, Zhang Heng, et al.Analysis on the temperature field and the ampacity of XLPE submarine HV cable based on electro-thermal-flow multiphysics coupling simulation[J]. Polymers, 2020, 12(4): 952. [29] 肖冬萍, 包杨, 杨帆, 等. 计及沉积物渗透性的捆绑式高压直流海底电缆载流量评估模型[J]. 中国电机工程学报, 2021, 41(14): 5066-5076. Xiao Dongping, Bao Yang, Yang Fan, et al.A model for estimating the ampacity of bundled HVDC submarine cables considering sediment permeability[J]. Proceedings of the CSEE, 2021, 41(14): 5066-5076. [30] 魏艳慧, 郑元浩, 龙海泳, 等. 绝缘层厚度对高压直流电缆电场和温度场分布的影响[J]. 电工技术学报, 2022, 37(15): 3932-3940. Wei Yanhui, Zheng Yuanhao, Long Haiyong, et al.Influence of insulation layer thickness on electric field and temperature field of HVDC cable[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3932-3940. [31] 张皓, 李鹏飞, 马国庆, 等. 典型敷设环境下超高压交流XLPE海底电缆载流量分析[J]. 电力工程技术, 2022, 41(6): 154-162. Zhang Hao, Li Pengfei, Ma Guoqing, et al.Ampacity analysis of extra-high voltage XLPE submarine cable in typical layout environments[J]. Electric Power Engineering Technology, 2022, 41(6): 154-162.