Simulation Study on the Extrusion Performances Based on the Viscosity Parameters of Cross-Linked Polyethylene Insulating Materials for High-Voltage Cables
Shang Kai, Li Jiacai, Wang Shihang, Li Shengtao
State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University Xi’an 710049 China
Abstract:The cross-linked polyethylene (XLPE) insulating materials and its extrusion molding technology for high-voltage cables are key issues for the production of high-voltage cables in China. The insulating materials are composed of low-density polyethylene (LDPE) by introducing cross-linking agent (dicumyl peroxide (DCP)) and antioxidants. The extrusion molding of XLPE insulation for high-voltage cables is a process in which the XLPE melt is continuously triple extruded and coated with metal conductors, and then undergoes cross-linking reaction to form high-voltage cable insulation. The viscosity parameters of the insulating materials melt will affect its extrusion performances in the single-screw extruder, such as the flow rate of the extrusion outlet and the maximum temperature of the melt in the flow channel, which in turn determine the molding quality and insulation properties of the cable insulation. This paper discussed the influence of the viscosity parameters of the high-voltage cable XLPE insulating materials on extrusion performances by means of simulation, and proposed to use the maximum temperature-extrusion outlet flow rate curve during insulating materials extrusion process to reflect the change rule of extrusion performances under different viscosity characteristics. The results show that the maximum temperature increases with the increase of the flow rate at the extrusion port, the zero-shear viscosity and relaxation time have the greatest influence on the slope of the maximum temperature-extrusion port flow rate curve, followed by the power law index, and the temperature coefficient has the least effect. Among them, the zero-shear viscosity and power law index are positively correlated with the flow rate at the extrusion port and the maximum temperature, and the flow rate at the extrusion outlet does not increase significantly after the zero-shear viscosity increases to a certain value, but the maximum temperature continues to increase. Meanwhile, the relationship between relaxation time and temperature coefficient is negatively correlated with the flow rate of the extrusion port and the maximum temperature, and the smaller the temperature coefficient is, the better the extrusion performances are. Finally, according to the actual extrusion production requirements of cable insulation material, the optimum range of viscosity characteristic parameters of insulation material is determined. Therefore, in terms of improving domestic insulation materials, the first priority is improving the relative average molecular weight of the LDPE base material in the insulation materials, followed by optimizing the molecular weight distribution and appropriately increasing the number of long chain branches to adjust the viscosity parameters of the high-voltage cable cross-linked polyethylene insulation materials, which can improve its extrusion properties. This study can provide important data support and theoretical basis for the development of domestic high-voltage cable cross-linked polyethylene insulation materials and the improvement of extrusion molding technology. Based on this research, the improvement strategy of great extrusion performances in high-voltage cable insulating materials will be explored in the future from the perspective of regulating the molecular chain structure of LDPE.
尚恺, 李加才, 王诗航, 李盛涛. 高压电缆交联聚乙烯绝缘料黏度参数对挤出特性影响的仿真研究[J]. 电工技术学报, 2024, 39(3): 810-819.
Shang Kai, Li Jiacai, Wang Shihang, Li Shengtao. Simulation Study on the Extrusion Performances Based on the Viscosity Parameters of Cross-Linked Polyethylene Insulating Materials for High-Voltage Cables. Transactions of China Electrotechnical Society, 2024, 39(3): 810-819.
[1] 陈树民. 我国电力需求影响因素研究[D]. 济南: 山东大学, 2018. Chen Shumin.Study on influencing factors of electricity demand in China[D]. Jinan: Shandong University, 2018. [2] 姜磊, 高景晖, 钟力生, 等. 远海漂浮式海上风电平台用动态海缆的发展[J]. 高压电器, 2022, 58(1): 1-11. Jiang Lei, Gao Jinghui, Zhong Lisheng, et al.Development of dynamic submarine cable for offshore floating wind power platforms[J]. High Voltage Apparatus, 2022, 58(1): 1-11. [3] 国家电网有限公司年鉴编辑委员会. 国家电网有限公司年鉴(2022)[M]. 北京: 中国电力出版社, 2022. [4] 田诗语, 卢奕城. 500kV电缆纳入城市综合管廊的应用研究[J]. 电工技术, 2019(8): 58-59. Tian Shiyu, Lu Yicheng.Application research on incorporating 500kV cables into urban utility tunnel[J]. Electric Engineering, 2019(8): 58-59. [5] 张华. 海淀500kV电缆工程的技术研究与应用[D]. 北京: 华北电力大学, 2014. Zhang Hua.Research and application of the technology of Haidian 500 kV cable project[D]. Beijing: North China Electric Power University, 2014. [6] GWEC. Global offshore wind report2021[R/OL]. Brussels, Belgium: Global Wind Energy Council, 2021[2022-04-25]. https://gwec.net/global-offshore-windreport-2021/. [7] 李盛涛, 王诗航, 杨柳青, 等. 高压电缆交联聚乙烯绝缘的关键性能与基础问题[J]. 中国电机工程学报, 2022, 42(11): 4247-4255. Li Shengtao, Wang Shihang, Yang Liuqing, et al.Important properties and fundamental issues of the crosslinked polyethylene insulating materials used in high-voltage cable[J]. Proceedings of the CSEE, 2022, 42(11): 4247-4255. [8] 杜伯学, 韩晨磊, 李进, 等. 高压直流电缆聚乙烯绝缘材料研究现状[J]. 电工技术学报, 2019, 34(1): 179-191. Du Boxue, Han Chenlei, Li Jin, et al.Research status of polyethylene insulation for high voltage direct current cables[J]. Transactions of China Electro-technical Society, 2019, 34(1): 179-191. [9] 李盛涛, 王诗航, 李建英. 高压直流电缆料的研发进展与路径分析[J]. 高电压技术, 2018, 44(5): 1399-1411. Li Shengtao, Wang Shihang, Li Jianying.Research progress and path analysis of insulating materials used in HVDC cable[J]. High Voltage Engineering, 2018, 44(5): 1399-1411. [10] Markey L, Stevens G C.Microstructural characterization of XLPE electrical insulation in power cables: determination of void size distributions using TEM[J]. Journal of Physics D: Applied Physics, 2003, 36(20): 2569-2583. [11] Sedlacek T, Lengalova A, Zatloukal M, et al.Pressure and temperature dependence of LDPE viscosity and free volume: the effect of molecular structure[J]. International Polymer Processing, 2006, 21(2): 98-103. [12] Krishnaswamy R K, Rohlfing D C, Sukhadia A M, et al.Extrusion of broad-molecular-weight-distribution polyethylenes[J]. Polymer Engineering and Science, 2004, 44(12): 2266-2273. [13] 朱敏慧, 闵道敏, 高梓魏, 等. 直流电缆用交联聚乙烯绝缘的击穿概率及其尺度效应仿真[J/OL]. 电工技术学报, 2023: 1-11. https://doi.org/10.19595/j.cnki.1000-6753.tces.222098. Zhu Huimin, Min Daomin, Gao Ziwei, et al. Breakdown probability and size effect simulation of XLPE insulation for DC power cables[J/OL]. Transactions of China Electrotechnical Society, 2023: 1-11. https://doi.org/10.19595/j.cnki.1000-6753.tces.222098. [14] 边洋震, 刘君峰, 许忠斌, 等. POLYFLOW在高分子成型加工中的应用研究进展[J]. 橡塑技术与装备, 2022, 48(3): 16-19. Bian Yangzhen, Liu Junfeng, Xu Zhongbin, et al.Research progress of application for POLYFLOW in polymer molding[J]. China Rubber/Plastics Technology and Equipment, 2022, 48(3): 16-19. [15] Sharma S, Goswami M, Deb A, et al.Structural deformation/instability of the co-extrudate rubber profiles due to die swell: experimental and CFD studies with 3D models[J]. Chemical Engineering Journal, 2021, 424: 130504. [16] Wilczyński K, Nastaj A, Lewandowski A, et al.Fundamentals of global modeling for polymer extrusion[J]. Polymers, 2019, 11(12): 2106. [17] 陈佳兴, 李子然. 单螺杆橡胶挤出机三维非等温流动数值模拟[J]. 材料科学与工艺, 2018, 26(1): 62-68. Chen Jiaxing, Li Ziran.Simulation of non-isothermal three-dimensional flow in the channel of a single-screw extruder for rubber material[J]. Materials Science and Technology, 2018, 26(1): 62-68. [18] 周克. 单螺杆螺压过程推进剂流变参数及物料混合特性的数值模拟研究[D]. 南京: 南京理工大学, 2015. Zhou Ke.Numerical simulation on the rheological parameter variation and mixing ability of single-screw extrusion process of propellant[D]. Nanjing: Nanjing University of Science and Technology, 2015. [19] 吴一帆, 王诗航, 李盛涛, 等. 低密度聚乙烯基料链结构对黏弹特性的影响[J]. 电工技术学报, 2024, 39(1): 3-12, 22. Wu Yifan, Wang Shihang, Li Shengtao, et al.Effect of molecular chain structure on viscoelasticity of low-density polyethylene[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 3-12, 22. [20] 李加才, 刘红剑, 王诗航, 等. 交联剂和抗氧剂对低密度聚乙烯绝缘料熔体黏弹特性的影响[J]. 中国电机工程学报, 2023, 43(1): 368-380. Li Jiacai, Liu Hongjian, Wang Shihang, et al.Effect of crosslinking agent and antioxidants on the melt viscoelastic properties of low-density polyethylene insulating materials[J]. Proceedings of the CSEE, 2023, 43(1): 368-380. [21] Mendelson R A, Bowles W A, Finger F L.Effect of molecular structure on polyethylene melt rheology. I. Low-shear behavior[J]. Journal of Polymer Science Part A-2: Polymer Physics, 1970, 8(1): 105-126. [22] Gabriel C, Lilge D.Molecular mass dependence of the zero shear-rate viscosity of LDPE melts: evidence of an exponential behaviour[J]. Rheologica Acta, 2006, 45(6): 995-1002. [23] Zhou Zhe, Pesek S, Klosin J, et al.Long chain branching detection and quantification in LDPE with special solvents, polarization transfer techniques, and inverse gated 13C NMR spectroscopy[J]. Macromo-lecules, 2018, 51(21): 8443-8454. [24] 李加才, 尚恺, 司志成, 等. 高压电缆绝缘低密度聚乙烯交联过程中级数和自催化反应的逆向调控[J]. 电工技术学报, 2024, 39(1): 13-22. Li Jiacai, Shang Kai, Si Zhicheng, et al.reverse regulation of order and autocatalysis reactions during the cross-linking process of low-density polyethylene used in high-voltage cable insulation[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 13-22. [25] Li Jiacai, Si Zhicheng, Shang Kai, et al.Kinetic and chemorheological evaluation on the crosslinking process of peroxide-initiated low-density polyethylene[J]. Polymer, 2023, 266: 125627. [26] Li Jiacai, Si Zhicheng, Shang Kai, et al.Coupling effect of LDPE molecular chain structure and additives on the rheological behaviors of cable insulating materials[J]. Polymers, 2023, 15(8): 1883. [27] Li Jiacai, Si Zhicheng, Shang Kai, et al.Kinetic and thermodynamic investigation on diffusion-limited crosslinking reaction behaviors of peroxide-induced low-density polyethylene[J]. Polymer Testing, 2023, 124: 108095. [28] 黎小林, 王一铸, 侯帅, 等. 220 kV高压交流可交联聚乙烯电缆料国产化研究[J]. 南方电网技术, 2022, 16(7): 22-29. Li Xiaolin, Wang Yizhu, Hou Shuai, et al.Study on localization of crosslinkable polyethylene cable material suitable for 220 kV HVAC[J]. Southern Power System Technology, 2022, 16(7): 22-29. [29] 朱晓辉. 交联工艺对交联聚乙烯绝缘特性的影响[D]. 天津: 天津大学, 2010. Zhu Xiaohui.Effects of cross-linking method on insulation properties of cross-linked polyethylene[D]. Tianjin: Tianjin University, 2010. [30] 陈晋南, 何吉宇. 聚合物流变学及其应用[M]. 北京: 中国轻工业出版社, 2018. [31] 吴其晔, 巫静安. 高分子材料流变学[M]. 北京: 高等教育出版社, 2002.