Characteristics of Cracking Effect and PMMA Fragment Driving in Limited Space Electric Explosion
Ma Yuliang1, Wu Jinhao1, Ma Ying2, Xian Xinxuan1, Han Ruoyu1
1. School of Mechatronics Engineering Beijing Institute of Technology Beijing 100081 China; 2. Key Laboratory of Lightning China Meteorological Administration Beijing 100081 China
Abstract:High-power pulsed discharge serves as a critical laboratory tool for emulating blast effects and as an efficient route for scaled validation of novel principles, structures, and materials while capturing fine-scale physical characteristics of explosion loads. To harness the high energy density of electric explosions, confinement is mandatory. When a thin, brittle shell is applied, the resulting fragment cloud exhibits high number density and significant engineering value. Nevertheless, existing investigations of electric explosions in confined spaces have focused primarily on fracture evolution, leaving fragment dynamics largely unexplored. In response, a light-electric joint diagnostic system with spatiotemporal resolution is developed, and a confined electric-explosion source is designed. Polymethyl methacrylate (PMMA) tubes of varying internal diameter constrain metal wires, enabling a systematic comparison of plasma behavior under different degrees of confinement and of the transient force-thermal loading that drives wall fragmentation and fragment acceleration. The influence of discharge energy and tube diameter on electrical characteristics is examined first. With a fixed internal diameter, increasing the charging voltage from 9 kV to 12.9 kV shifts the discharge regime from aperiodic to oscillatory. The peak electric power rises from 109.6 MW to 311.8 MW, an increase of 184%, and the time to peak advances by 30%. Further elevation to 15.8 kV introduces a double-peaked current waveform. At constant stored energy, enlarging the tube diameter from 5.9 mm to 11.9 mm exerts a negligible influence on electrical behavior, presumably because even the smallest diameter (5.9 mm) is an order of magnitude larger than the wire diameter (hundreds of micrometers) and therefore does not significantly perturb energy deposition. The fracture process and fragment velocity and size are analyzed next. Except under the critical condition, complete crack development required 14~18 μs from discharge initiation. Under the critical condition, this duration extends to 27 μs, effectively doubling the fracture time. Crack propagation velocity is approximately 2.5 km/s. After complete wall fragmentation, the initial stored energy governs whether the early expansion resembles a large-fragment burst or a quasi-spherical explosion. Under condition A, fragment velocity rises from 148 m/s to 165 m/s within 30 μs. Under condition B, the peak velocity is only 63 m/s, followed by a prolonged plateau. When the initial stored energy increases from 250 J to 500 J, the maximum fragment size decreases from 32 mm to 11 mm and large fragments become markedly less numerous. At 500 J, reducing the tube diameter from 11.9 mm to 5.9 mm stepwise increases the proportion of fragments in the 0~4 mm range from 47% to 57%, 69% and 94%. The wall-damage mechanism is discussed in the final section. Within 5 μs after ignition, the luminous plasma fills the entire tube (inner diameter 10.0 mm, outer diameter 14.0 mm), with the shock front and explosion products indistinguishable. The interaction is interpreted as direct impact of the arc channel on the wall. Calculated arc-channel pressures of 100~110 MPa at 5 μs are consistent with experimental observations, indicating that the channel has approached the inner wall by that instant.
马裕良, 吴瑾昊, 马颖, 鲜欣轩, 韩若愚. 有限空间电爆炸等离子体致裂效应与有机玻璃破片驱动特性[J]. 电工技术学报, 2025, 40(21): 6780-6794.
Ma Yuliang, Wu Jinhao, Ma Ying, Xian Xinxuan, Han Ruoyu. Characteristics of Cracking Effect and PMMA Fragment Driving in Limited Space Electric Explosion. Transactions of China Electrotechnical Society, 2025, 40(21): 6780-6794.
[1] 肖越, 俞哲, 王迪雅, 等. 大气压交流金属针-水电极放电特性研究[J]. 电工技术学报, 2024, 39(9): 2896-2906. Xiao Yue, Yu Zhe, Wang Diya, et al.Research on discharge characteristics of AC excited metal needle- water electrode at atmospheric pressure[J]. Trans- actions of China Electrotechnical Society, 2024, 39(9): 2896-2906. [2] 黄仕杰, 刘毅, 林福昌, 等. 高压脉冲放电破岩电弧阻抗特性分析[J]. 电工技术学报, 2022, 37(19): 4978-4988. Huang Shijie, Liu Yi, Lin Fuchang, et al.Analysis of arc impedance characteristics in high-voltage electric pulse discharge rock destruction[J]. Transactions of China Electrotechnical Society, 2022, 37(19): 4978-4988. [3] 邝勇, 章程, 胡修翠, 等. 纳秒脉冲液相放电耦合微气泡固氮影响因素分析[J]. 电工技术学报, 2023, 38(15): 3960-3971. Kuang Yong, Zhang Cheng, Hu Xiucui, et al.Factors influencing nitrogen fixation by microbubbles coupled with nanosecond-pulse liquid phase discharges[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 3960-3971. [4] Wang Xinxin.Research at Tsinghua University on electrical explosions of wires[J]. Matter and Radia- tion at Extremes, 2019, 4: 017201. [5] Han Ruoyu.Electrical explosion in a medium: plasmas, shock waves, and applications[M]//Shao Tao, Zhang Cheng. Pulsed Discharge Plasmas: Charac- teristics and Applications. Singapore: Springer Nature Singapore, 2023: 127-164. [6] 吴艳青, 王明扬, 黄风雷, 等. 颗粒高能炸药低速撞击点火-燃烧机理的试验研究[C]//中国力学大会- 2015论文摘要集, 上海, 2015: 40. [7] Bazalitski G, Gurovich V T, Fedotov-Gefen A, et al.Simulation of converging cylindrical GPa-range shock waves generated by wire array underwater electrical explosions[J]. Shock Waves, 2011, 21(4): 321-329. [8] Yanuka D, Theocharous S, Bland S N.Pulsed power driven cylindrical wire array explosions in different media[J]. Physics of Plasmas, 2019, 26(12): 122704. [9] Sedoi V S, Mesyats G A, Oreshkin V I, et al.The current density and the specific energy input in fast electrical explosion[J]. IEEE Transactions on Plasma Science, 1999, 27(4): 845-850. [10] Zhang Shaojie, Zhang Yongmin, Lu Yong, et al.Underwater electrical explosion of metallic wire and tube: a comparison study[J]. Physics of Plasmas, 2023, 30(12): 123505. [11] Maler D, Grikshtas R, Efimov S, et al.Supersonic water jets as point-like sources of extremely high pressure[J]. Physics of Plasmas, 2023, 30(2): 022710. [12] Han Ruoyu, Li Chen, Yao Weibo, et al.Electrical explosion in confined space: from warm dense matter to fragmentation[J]. Physics of Fluids, 2022, 34(8): 087108. [13] 张少杰, 张永民, 罗成, 等. 水中铝丝和铜丝电爆炸特性的实验研究[J]. 西安交通大学学报, 2025, 59(9): 33-40. Zhang Shaojie, Zhang Yongmin, Luo Cheng, et al.Experimental study on electrical explosion characteris- tics of aluminum and copper wires in water[J]. Journal of Xi'an Jiaotong University, 2025, 59(9): 33-40. [14] Han Ruoyu, Yuan Wei, Cao Yuchen, et al.Breakdown dynamics and instability of underwater metallic aerosol bubble atomized by electrical explosion[J]. Physics of Fluids, 2024, 36(4): 047112. [15] Efimov S, Gurovich V T, Bazalitski G, et al.Addressing the efficiency of the energy transfer to the water flow by underwater electrical wire explosion[J]. Journal of Applied Physics, 2009, 106(7): 073308. [16] 林柏泉, 张祥良. 低透难抽煤层等离子体致裂增透机制及研究进展[J]. 中国矿业大学学报, 2023, 52(6): 1041-1057. Lin Baiquan, Zhang Xiangliang.Mechanism and research progress of plasma induced cracking and enhancement in low permeability and hard to extract coal seams[J]. Journal of China University of Mining & Technology, 2023, 52(6): 1041-1057. [17] Zhou Haibin, Zhang Yongmin, Li Hengle, et al.Generation of electrohydraulic shock waves by plasma-ignited energetic materials: III. shock wave characteristics with three discharge loads[J]. IEEE Transactions on Plasma Science, 2015, 43(12): 4017-4023. [18] 钱盾, 刘志刚, 邹晓兵, 等. 给定储能下水中金属丝阵电爆炸冲击波增强的方法[J]. 高电压技术, 2021, 47(3): 815-825. Qian Dun, Liu Zhigang, Zou Xiaobing, et al.Enhancement of shock wave from underwater electrical wire-array explosion at a given stored energy[J]. High Voltage Engineering, 2021, 47(3): 815-825. [19] Han Ruoyu, Zhou Haibin, Wu Jiawei, et al.Relationship between energy deposition and shock wave phenomenon in an underwater electrical wire explosion[J]. Physics of Plasmas, 2017, 24(9): 093506. [20] Han Ruoyu, Zhou Haibin, Wu Jiawei, et al.Experi- mental verification of the vaporization's contribution to the shock waves generated by underwater electrical wire explosion under micro-second timescale pulsed discharge[J]. Physics of Plasmas, 2017, 24(6): 063511. [21] Han Ruoyu, Zhu Wanying, Wu Jiawei, et al.Spatial- temporal evolution of plasma radiation in electrical wire explosion: a morphological observation[J]. Journal of Physics D: Applied Physics, 2020, 53(34): 345201. [22] 周风华, 王札立, 胡时胜. 有机玻璃在高应变率下的损伤型非线性粘弹性本构关系及破坏准则[J]. 爆炸与冲击, 1992, 12(4): 333-342. Zhou Fenghua, Wang Zhali, Hu Shisheng.A damage- modified nonlinear visco-elastic constitutive relation and failure criterion of PMMA at high strain-rates[J]. Explosion and Shock Waves, 1992, 12(4): 333-342. [23] 熊佳明, 李黎, 戴宏宇, 等. 基于爆炸波及能量平衡理论的大电流冲击电弧的冲击波超压作用分析[J]. 中国电机工程学报, 2018, 38(22): 6746-6753. Xiong Jiaming, Li Li, Dai Hongyu, et al.Analysis of shock wave overpressure effect of high current impulse arcs based on the explosive wave and energy balance theory[J]. Proceedings of the CSEE, 2018, 38(22): 6746-6753. [24] Han Ruoyu, Li Chen, Ouyang Jiting, et al.Electrical explosion across gas-liquid interface: aerosol break- down, shock waves, and cavity dynamics[J]. Physics of Fluids, 2021, 33(7): 077115. [25] Lin Shaochi.Cylindrical shock waves produced by instantaneous energy release[J]. Journal of Applied Physics, 1954, 25(1): 54-57. [26] Fu Yangyang, Luo Haiyun, Zou Xiaobing, et al.Validity of the similarity law for the glow discharges in non-plane-parallel gaps[J]. Plasma Sources Science and Technology, 2014, 23(6): 065035. [27] 王新新, 付洋洋. 气体放电的相似性[J]. 高电压技术, 2014, 40(10): 2966-2972. Wang Xinxin, Fu Yangyang.Similarity in gas dis- charges[J]. High Voltage Engineering, 2014, 40(10): 2966-2972. [28] Fu Yangyang, Wang Huihui, Wang Xinxin.Similarity theory and scaling laws for low-temperature plasma discharges: a comprehensive review[J]. Reviews of Modern Plasma Physics, 2023, 7(1): 10. [29] Liu Zhigang, Ding Zhengyuan, Shi Huantong, et al.Similarity law and load optimization of underwater electrical explosion of wire array[J]. Physics of Plasmas, 2025, 32(6): 063507. [30] 宫鑫, 沈昊, 戴宏宇, 等. 强流脉冲电弧的冲击波超压峰值及其影响因素[J]. 高电压技术, 2021, 47(12): 4412-4419. Gong Xin, Shen Hao, Dai Hongyu, et al.Peak value of shock wave overpressure and influencing factors of high-current pulse arc[J]. High Voltage Engineering, 2021, 47(12): 4412-4419. [31] 刘函. 爆炸冲击作用下金属板壳结构的动力学响应实验研究[D]. 北京: 北京理工大学, 2015. Liu Han.Experimental study on the dynamic response of plated and shell structures subjected to blast loading[D]. Beijing: Beijing Institute of Technology, 2015. [32] 苗春贺, 袁良柱, 陆建华, 等. 聚甲基丙烯酸甲酯的冲击破碎扩散特性[J]. 物理学报, 2022, 71(21): 292-300. Miao Chunhe, Yuan Liangzhu, Lu Jianhua, et al.Deformation evolution and diffusion characteristics of polymethyl methacrylate under impact loading[J]. Acta Physica Sinica, 2022, 71(21): 292-300. [33] 苗春贺. 低速冲击下脆性材料破碎扩散特性研究[D]. 合肥: 中国科学技术大学, 2023. Miao Chunhe.Investigation on breakage and diffusion characteristics of brittle materials under low speed impact[D]. Hefei: University of Science and Technology of China, 2023.