Calculation of Particle Composition and Physical Property Parameters of Arc Plasma Particles of CF3SO2F and Its Gas Mixtures
Ke Xue1, Wang Anyang1, Liu Wei2, Yan Xianglian3, Wang Wen3, Guo Yuzheng1, Wang Jun1
1. School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China; 2. Power Science Research Institute State Grid Anhui Electric Power Co. Ltd Hefei 230022 China; 3. China Electric Power Research Institute Beijing 100192 China
Abstract:Sulfur hexafluoride (SF6) is commonly used as an insulating gas in electrical equipment, but its high global warming potential (GWP) has led to efforts to seek for alternative gases. Reducing SF6 usage can significantly decrease greenhouse gas emissions, benefitting climate change mitigation and meeting the demand for eco-friendly electrical equipment in renewable energy. Previous research has identified potential environmentally friendly alternatives like C4F7N and C5F10O, but improvements are needed due to factors such as high liquefaction temperature, GWP values, and toxicity. Trifluoromethyl sulfuryl fluoride (CF3SO2F) has recently emerged as a highly promising replacement, exhibiting superior performance compared to SF6 and a much lower GWP of 3 678 (around 15% of SF6's GWP). Thus, CF3SO2F shows excellent potential as a substitute for SF6 in insulation applications. Accurate calculations of CF3SO2F's particle composition and physical parameters at various temperatures are crucial for further studying its insulating properties and ability to extinguish arcs. This study delves into the particle composition of CF3SO2F gas and its mixture in arc plasma, wherein equilibrium compositions of the plasma within the temperature range from 300 K to 30 000 K were calculated employing the Gibbs free energy minimization method. By virtue of standard statistical thermodynamic equations and the Chapman-Enskog method, the variations of thermodynamic and transport parameters of the plasma versus temperature were computed for different atmospheric pressures and mixture ratios. Subsequently, the influence of different buffer gases on the CF3SO2F mixture system was explored, along with a comparison of relevant properties between CF3SO2F and other commonly used insulating gases such as SF6 and C4F7N. Finally, the thermal arc breaking capacity of CF3SO2F gas was comprehensively analyzed. The results of particle composition calculations for CF3SO2F-N2 mixtures show that as the temperature increases, larger molecules gradually decompose into smaller molecules and atoms. Above 8 000 K, the occurrence of primary and secondary ionization reactions can be observed for monatomic species, with the order of ionization peaks determined by their respective ionization energies. Furthermore, higher atmospheric pressure has a significant suppressive effect on particle dissociation and ionization reactions. The CF3SO2F-N2 mixture system exhibits four major specific heat peaks at approximately 2 500 K, 7 000 K, 16 000 K, and 30 000 K, which correspond to different primary reactions occurring under these temperatures. Interestingly, the physical properties show significantly distinct for mixed systems with different buffer gases at low temperatures, primarily due to the differences in the number of N2 and CO2 atoms. The decomposition process for N2 occurs in one step at 7 000 K, while CO2 undergoes a two-step decomposition at 3 000 K and 8 000 K, respectively. Computations of the transport parameters for different insulating gases reveal that the CF3SO2F system, which contains carbon (C) element, exhibits higher conductivity than SF6 between 3 500 K and temperatures below 10 000K. With regards to the thermal arc breaking capacity, 100% SF6 possesses the strongest ability over CF3SO2F and C4F7N systems. Finally, the thermal arc interruption capabilities of CF3SO2F gas and other common insulating gases were analyzed under actual operating conditions (-25℃, 6 atm). The results indicate that 100% SF6 exhibits a stronger thermal arc interruption capability. Additionally, the highest thermal arc interruption capability is observed in the 10%CF3SO2F-90%CO2 mixture system, where the ρcp peak is slightly higher than that of the 5%C4F7N-95%CO2 mixture system below the conductive temperature, while the opposite is true above the conductive temperature. The following conclusions can be drawn from the simulation analysis: (1) Higher atmospheric pressure effectively suppresses the decomposition and ionization reactions of CF3SO2F gas. (2) An increased proportion of CF3SO2F in the gas mixture leads to more intense decomposition reactions in the low-temperature region, and milder ionization reactions in the high-temperature region. (3) Compared to the CO2 pure gas system, N2 exhibits minimal decomposition processes below the conductive temperature, resulting in distinct differences in the thermodynamic properties and thermal arc interruption characteristics of the corresponding CF3SO2F mixture systems. (4) The ρcp index suggests that CF3SO2F possesses a stronger thermal arc breaking capacity than the commonly used insulating gas C4F7N.
柯学, 王安阳, 刘伟, 颜湘莲, 王雯, 郭宇铮, 王俊. CF3SO2F及其混合气体电弧等离子体粒子组分与物性参数计算[J]. 电工技术学报, 2024, 39(19): 6145-6161.
Ke Xue, Wang Anyang, Liu Wei, Yan Xianglian, Wang Wen, Guo Yuzheng, Wang Jun. Calculation of Particle Composition and Physical Property Parameters of Arc Plasma Particles of CF3SO2F and Its Gas Mixtures. Transactions of China Electrotechnical Society, 2024, 39(19): 6145-6161.
[1] Zeng Fuping, Li Haotian, Zhang Mingxuan, et al.Isotope tracing experimental study on the effects of trace H2O on the over-thermal decomposition of SF6[J]. Journal of Physics D Applied Physics, 2020, 53(35): 355501. [2] 高克利, 颜湘莲, 刘焱, 等. 环保气体绝缘管道技术研究进展[J]. 电工技术学报, 2020, 35(1): 3-20. Gao Keli, Yan Xianglian, Liu Yan, et al.Progress of technology for environment-friendly gas insulated transmission line[J]. Transactions of China Electro-technical Society, 2020, 35(1): 3-20. [3] 张国治, 胡栩焜, 邓广宇, 等. SF6及SF6故障分解气体与局部放电柔性特高频天线传感器基底相容性实验研究[J]. 电工技术学报, 2023, 38(15): 4050-4062. Zhang Guozhi, Hu Xukun, Deng Guangyu, et al.Experimental study on substrate compatibility of SF6 and SF6 fault-decomposing gases with partial discharge flexible UHF antenna sensors[J]. Trans-actions of China Electrotechnical Society, 2023, 38(15): 4050-4062. [4] 毛建坤, 汤会增, 洪西凯, 等. SF6气体分解物组份检测法在GIS局部放电故障诊断中的应用[J]. 电气技术, 2016, 17(8): 99-102. Mao Jiankun, Tang Huizeng, Hong Xikai, et al.Application of SF6 gas decomposition component detection method in the diagnosis of partial discharge in GIS[J]. Electrical Engineering, 2016, 17(8): 99-102. [5] 高新, 李志慧, 刘宇鹏, 等. 改性石墨烯基传感器对SF6分解组分H2S的吸附机理及检测特性研究[J]. 电工技术学报, 2023, 38(13): 3606-3618. Gao Xin, Li Zhihui, Liu Yupeng, et al.Study on adsorption mechanism and detection characteristics of modified graphene sensors for SF6 decomposed component H2S[J]. Transactions of China Electro-technical Society, 2023, 38(13): 3606-3618. [6] Zhang Boya, Xiong Jiayu, Chen Li, et al.Fundamental physicochemical properties of SF6-alternative gases: a review of recent progress[J]. Journal of Physics D Applied Physics, 2020, 53(17): 173001. [7] 肖淞, 石生尧, 林婧桐, 等. “碳达峰、碳中和”目标下高压电气设备中强温室绝缘气体SF6控制策略分析[J]. 中国电机工程学报, 2023, 43(1): 339-358. Xiao Song, Shi Shengyao, Lin Jingtong, et al.Analysis on the control strategy of the strong greenhouse insulating gas SF6 in high-voltage electrical equipment under the goal of “emission peak and carbon neutrality”[J]. Proceedings of the CSEE, 2023, 43(1): 339-358. [8] 唐炬, 唐博文, 李祎, 等. 环保绝缘气体C5F10O分解及复原性能研究现状及展望[J]. 中国电机工程学报, 2022, 42(3): 1210-1222. Tang Ju, Tang Bowen, Li Yi, et al.Research and consideration on the decomposition and recovery performance of eco-friendly gas insulating medium C5F10O[J]. Proceedings of the CSEE, 2022, 42(3): 1210-1222. [9] 颜湘莲, 高克利, 郑宇, 等. SF6混合气体及替代气体研究进展[J]. 电网技术, 2018, 42(6): 1837-1844. Yan Xianglian, Gao Keli, Zheng Yu, et al.Progress of gas mixture and alternative gas of SF6[J]. Power System Technology, 2018, 42(6): 1837-1844. [10] 张晓星, 田双双, 肖淞, 等. SF6替代气体研究现状综述[J]. 电工技术学报, 2018, 33(12): 2883-2893. Zhang Xiaoxing, Tian Shuangshuang, Xiao Song, et al.A review study of SF6 substitute gases[J]. Transactions of China Electrotechnical Society, 2018, 33(12): 2883-2893. [11] 周朕蕊, 韩冬, 赵明月, 等. SF6替代气体分解特性的研究综述[J]. 电工技术学报, 2020, 35(23): 4998-5014. Zhou Zhenrui, Han Dong, Zhao Mingyue, et al.Review on decomposition characteristics of SF6 alternative gases[J]. Transactions of China Electro-technical Society, 2020, 35(23): 4998-5014. [12] Li Xingwen, Zhao Hu, Murphy A B.SF6-alternative gases for application in gas-insulated switchgear[J]. Journal of Physics D Applied Physics, 2018, 51(15): 153001. [13] 崔兆轩, 林莘, 钟建英, 等. C4F7N/CO2混合气体特高压母线通流温升特性研究[J]. 电工技术学报, 2023, 38(9): 2491-2499. Cui Zhaoxuan, Lin Xin, Zhong Jianying, et al.Study on the temperature rise characteristics of C4F7N/CO2 mixed gas ultra high voltage bus[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2491-2499. [14] 周文俊, 邱睿, 郑宇, 等. 环保绝缘气体介电强度预测方法评估[J]. 电工技术学报, 2023, 38(增刊1): 214-221. Zhou Wenjun, Qiu Rui, Zheng Yu, et al.The evaluation of dielectric strength prediction methods for eco-friendly insulation gases[J]. Transactions of China Electrotechnical Society, 2023, 38(S1): 214-221. [15] 李亚龙, 张晓星, 卫卓, 等. 环保绝缘介质C5F10O混合气体体积分数比定量检测[J]. 电工技术学报, 2022, 37(8): 2117-2125. Li Yalong, Zhang Xiaoxing, Wei Zhuo, et al.Quantitative detection on the concentration of eco-friendly insulating medium C5F10O gas mixture concentration[J]. Transactions of China Electro-technical Society, 2022, 37(8): 2117-2125. [16] 仲林林, 王逸凡, 顾琦. C4F7N气体电弧的辐射输运特性研究[J]. 电工技术学报, 2023, 38(19): 5316-5329. Zhong Linlin, Wang Yifan, Gu Qi.Study on radiation transport characteristics of C4F7N gaseous arc[J]. Transactions of China Electrotechnical Society, 2023, 38(19): 5316-5329. [17] 叶凡超, 张晓星, 田双双, 等. 环保型C4F7N混合气体生物安全性及应用可行性评估[J]. 高压电器, 2023, 59(3): 1-7. Ye Fanchao, Zhang Xiaoxing, Tian Shuangshuang, et al.Biosafety and application feasibility assessment of eco-friendly C4F7N gas mixture[J]. High Voltage Apparatus, 2023, 59(3): 1-7. [18] 邓云坤, 彭晶, 焦琳, 等. C4F7N-CO2混合气体绝缘性能计算分析[J]. 高压电器, 2022, 58(3): 101-106. Deng Yunkun, Peng Jing, Jiao Lin, et al.Calculation and analysis of the insulation performance of C4F7N-CO2 gas mixtures[J]. High Voltage Apparatus, 2022, 58(3): 101-106. [19] 杨圆, 高克利, 袁帅, 等. 典型电场下C4F7N/CO2/ O2混合气体工频击穿特性研究[J]. 电工技术学报, 2022, 37(15): 3913-3922. Yang Yuan, Gao Keli, Yuan Shuai, et al.Research on the power frequency breakdown characteristics of C4F7N/CO2/O2 gas mixture under typical electric fields[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3913-3922. [20] 吴鹏, 叶凡超, 李祎, 等. C4F7N/CO2/O2与三元乙丙橡胶的相容性及相互作用机理研究[J]. 电工技术学报, 2022, 37(13): 3393-3403. Wu Peng, Ye Fanchao, Li Yi, et al.Compatibility and interaction mechanism between C4F7N/CO2/O2 and EPDM[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3393-3403. [21] Zhong Linlin, Rong Mingzhe, Wang Xiaohua, et al.Compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2 as substitutes for SF6 to reduce global warming potential[J]. AIP Advances, 2017, 7(7): 075003. [22] Yu Xiaojuan, Hou Hua, Wang Baoshan.A priori theoretical model for discovery of environmentally sustainable perfluorinated compounds[J]. The Journal of Physical Chemistry A, 2018, 122(13): 3462-3469. [23] Wang Yi, Gao Zhanyang, Wang Baoshan, et al.Synthesis and dielectric properties of trifluoro-methanesulfonyl fluoride: an alternative gas to SF6[J]. Industrial & Engineering Chemistry Research, 2019, 58(48): 21913-21920. [24] Wu Yi, Wang Chunlin, Sun Hao, et al.Properties of C4F7N-CO2 thermal plasmas: thermodynamic properties, transport coefficients and emission coefficients[J]. Journal of Physics D: Applied Physics, 2018, 51(15): 155206. [25] 宋宇, 林莘, 徐建源, 等. 高压断路器中C4F7N/ CO2混合气体的开断性能[J]. 高电压技术, 2023, 49(3): 971-981. Song Yu, Lin Xin, Xu Jianyuan, et al.Interruption performance of C4F7N/CO2 gas in high-voltage circuit breaker[J]. High Voltage Engineering, 2023, 49(3): 971-981. [26] 张博雅, 周然, 郝迈, 等. C4F7N混合气体在40.5kV断路器中的应用研究(二): 灭弧性能实验与弧后分解特性[J]. 中国电机工程学报, 2022, 42(24): 9147-9158. Zhang Boya, Zhou Ran, Hao Mai, et al.Research on the application of C4F7N gas mixture in a 40.5kV circuit breaker (part Ⅱ): arc extinguishing performance tests and decomposition property[J]. Proceedings of the CSEE, 2022, 42(24): 9147-9158. [27] Hu Shizhuo, Wang Yi, Zhou Wenjun, et al.Dielectric properties of CF3SO2F/N2 and CF3SO2F/CO2 mixtures as a substitute to SF6[J]. Industrial & Engineering Chemistry Research, 2020, 59(35): 15796-15804. [28] 荣命哲, 吴翊, 杨飞, 等. 开关电弧电流零区非平衡态等离子体仿真研究现状[J]. 电工技术学报, 2017, 32(2): 1-12, 23. Rong Mingzhe, Wu Yi, Yang Fei, et al.Review on the simulation method of non-equilibrium arc plasma during current zero period in the circuit breaker[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 1-12, 23. [29] Zhang Mi, Hou Hua, Wang Baoshan.Mechanistic and kinetic investigations on decomposition of trifluoro-methanesulfonyl fluoride in the presence of water vapor and electric field[J]. The Journal of Physical Chemistry A, 2023, 127(3): 671-684. [30] 马虹斌, 邱毓昌, 孟玉婵, 等. SF6-CO2混合气体火花放电分解产物的气相色谱分析[J]. 高压电器, 1995, 31(3): 16-20. [31] 颜湘莲, 宋杲, 王承玉, 等. 基于SF6气体分解产物检测的气体绝缘开关设备状态监测[J]. 电力自动化设备, 2014, 34(6): 83-88, 95. Yan Xianglian, Song Gao, Wang Chengyu, et al.Gas-insulated switchgear state monitoring based on SF6 decomposition products detection[J]. Electric Power Automation Equipment, 2014, 34(6): 83-88, 95. [32] Mutsukura N, Turban G.Mass spectrometric study of SF6-N2 plasma during etching of silicon and tungsten[J]. Plasma Chemistry and Plasma Processing, 1990, 10(1): 27-47. [33] Li Chen, Tang Ju, Zhao Zhiqiang, et al.Decomposition characteristics of SF6/N2 under partial discharge of different degrees[J]. IEEE Access, 2020, 8: 192312-192319. [34] Vial L, Casanovas A M, Coll I, et al.Decomposition products from negative and 50 Hz AC corona discharges in compressed SF6 and SF6/N2(10:90) mixtures. Effect of water vapour added to the gas[J]. Journal of Physics D: Applied Physics, 1999, 32(14): 1681-1692. [35] Fu Yuwei, Yang Aijun, Wang Xiaohua, et al.Theoretical study of the decomposition mechanism of C4F7N[J]. Journal of Physics D: Applied Physics, 2019, 52(24): 245203. [36] Zhong Linlin, Wang Jiayu, Xu Jie, et al.Effects of buffer gases on plasma properties and arc decaying characteristics of C4F7N-N2 and C4F7N-CO2 arc plasmas[J]. Plasma Chemistry and Plasma Processing, 2019, 39(6): 1379-1396. [37] 张震. SF6替代介质电弧微观参数及电击穿特性研究[D]. 沈阳: 沈阳工业大学, 2020. Zhang Zhen.Research on microscopic parameters and electrical breakdown characteristics of SF6 alternative dielectric arc[D]. Shenyang: Shenyang University of Technology, 2020. [38] 臧春艳, 何俊佳, 程礼椿. 平衡态和非平衡态等离子体的微观模型研究[J]. 高压电器, 2005, 41(6): 416-419. Zang Chunyan, He Junjia, Cheng Lichun.Study on microcosmic models of equilibrium and non-equilibrium plasma[J]. High Voltage Apparatus, 2005, 41(6): 416-419. [39] Lu Tian, Chen Qinxue.Shermo: a general code for calculating molecular thermochemistry properties[J]. Computational and Theoretical Chemistry, 2021, 1200: 113249. [40] National Institute of Standards and Technology. NIST-JANAF thermochemical tables[DB/OL]. (2018-09-06)[2023-08-28]. https://janaf.nist.gov/. [41] Zhong Linlin, Gu Qi, Wu Bingyu.Graphite production in two-temperature non-LTE plasmas of C4F7N and C5F10O mixed with CO2, N2, and O2 as eco-friendly SF6 replacements: a numerical study[J]. Plasma Processes and Polymers, 2021, 18(8): 2100036. [42] 张立松, 叶明天, 庞磊, 等. C4F7N混合气体电弧等离子体热力学参数计算[J]. 高电压技术, 2020, 46(1): 362-368. Zhang Lisong, Ye Mingtian, Pang Lei, et al.Calculation of thermodynamic properties of C4F7N mixtures arc plasma[J]. High Voltage Engineering, 2020, 46(1): 362-368. [43] 荣命哲, 仲林林, 王小华, 等. 平衡态与非平衡态电弧等离子体微观特性计算研究综述[J]. 电工技术学报, 2016, 31(19): 54-65. Rong Mingzhe, Zhong Linlin, Wang Xiaohua, et al.Review of microscopic property calculation of equilibrium and non-equilibrium arc plasma[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 54-65. [44] Zhong Linlin, Murphy A B, Wang Xiaohua, et al.Calculation of two-temperature plasma composition: I. Mass action law methods and extremum searching methods[J]. Journal of Physics D Applied Physics, 2020, 53(6): 065202. [45] Wu Yi, Chen Zhexin, Rong Mingzhe, et al.Calculation of 2-temperature plasma thermo-physical properties considering condensed phases: application to CO2-CH4 plasma: part 1. composition and thermodynamic properties[J]. Journal of Physics D Applied Physics, 2016, 49(40): 405203. [46] 林莘, 王亮, 徐建源, 等. 非平衡态双温度SF6等离子体电弧数学模型研究[J]. 高压电器, 2015, 51(3): 1-7, 14. Lin Xin, Wang Liang, Xu Jianyuan, et al.Non-equilibrium dual temperature SF6 plasma arc mathematical model research[J]. High Voltage Apparatus, 2015, 51(3): 1-7, 14. [47] Wang Weizong.Investigation of the dynamic characteristics and decaying behaviour of SF6 arcs in switching applications[D]. Liverpool: University of Liverpool, 2013. [48] Hirschfelder J O, Curtiss C F, Bird R B.The molecular theory of gases and liquids[M]. New York: John Wiley & Sons, 1964. [49] Chapman S, Cowling T G.The Mathematical Theory of Non Uniform Gases[M]. 3rd ed. Cambridge: Cambridge University Press, 1970. [50] Tanaka Y, Yamachi N, Matsumoto S, et al.Thermodynamic and transport properties of CO2, CO2-O2, and CO2-H2 mixtures at temperatures of 300 to 30000 K and pressures of 0.1 to 10 MPa[J]. Electrical Engineering in Japan, 2008, 163(4): 18-29. [51] Li Xingwen, Guo Xiaoxue, Murphy A B, et al.Calculation of thermodynamic properties and transport coefficients of C5F10O-CO2 thermal plasmas[J]. Journal of Applied Physics, 2017, 122(14): 143302. [52] Rong Mingzhe, Zhong Linlin, Cressault Y, et al.Thermophysical properties of SF6-Cu mixtures at temperatures of 300-30000 K and pressures of 0.01-1.0 MPa: part 1. equilibrium compositions and thermodynamic properties considering condensed phases[J]. Journal of Physics D: Applied Physics, 2014, 47(49): 495202. [53] Teulet P, Gonzalez J J, Mercado-Cabrera A, et al.One-dimensional hydro-kinetic modelling of the decaying arc in air-PA66-copper mixtures: II. study of the interruption ability[J]. Journal of Physics D: Applied Physics, 2009, 42(18): 185207. [54] 张博雅, 周然, 郝迈, 等. C4F7N混合气体在40.5 kV断路器中的应用研究(一): 燃弧特性仿真与灭弧性能评估[J]. 中国电机工程学报, 2022, 42(23): 8750-8761. Zhang Boya, Zhou Ran, Hao Mai, et al.Research on application of C4F7N gas mixture in 40.5 kV circuit breaker (part I): simulation and evaluation of arc extinguishing performance[J]. Proceedings of the CSEE, 2022, 42(23): 8750-8761. [55] Zhang Q, Yan J D, Fang M T C. The modelling of an SF6 arc in a supersonic nozzle: I. cold flow features and DC arc characteristics[J]. Journal of Physics D: Applied Physics, 2014, 47(21): 215201. [56] Liu J, Zhang Q, Yan J D, et al.Analysis of the characteristics of DC nozzle arcs in air and guidance for the search of SF6 replacement gas[J]. Journal of Physics D: Applied Physics, 2016, 49(43): 435201. [57] Frost L S, Liebermann R W.Composition and transport properties of SF6 and their use in a simplified enthalpy flow arc model[J]. Proceedings of the IEEE, 1971, 59(4): 474-485. [58] Wada J, Ueta G, Okabe S, et al.Dielectric properties of gas mixtures with per-fluorocarbon gas and gas with low liquefaction temperature[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(2): 838-847.