Abstract:The cumulative effect of multiple discharges at high injected trigger energy causes a serious problem of trigger failure of the Plasma-Jet-Triggered gas gap switch. In order to achieve stable triggering conduction of the gas switch, the experiment of the influence of the injection energy rate on the plasma injection characteristics and the study of the degradation of the gas switch triggering performance under repeated triggering were carried out t based on the gas switch trigger life research platform. Finally, a residual trigger life prediction model was established to predict the gas switch trigger life based on the law of gradual change of the trigger characteristic parameters. The results are as follows: (1) The energy release rate is fast under the 40 μF capacitive discharge circuit, the high-temperature ablation environment is instantly established, and the plasma jet is rapidly formed and ejected from the cavity, but the main channel arc current acts on the trigger channel for a short period of time, the gas-producing material is not fully ablated, the gas molecules in the ferry vapor layer are not completely dissociated to form plasma, the conductivity of the plasma jet is low, and the aerodynamic force of the plasma jet accumulated in the short ablation time is insufficient, so the plasma jet duration and characteristic parameters are reduced, and the gas switch touch-on cannot be induced. Under the 240 μF high-capacity trigger circuit, the arc ablation time is extended by 1.3 times and the energy used for dissociation to form plasma is increased by 24.4%, which significantly improves the plasma jet parameters (jet area, height, velocity, etc.) and enables stable trigger conduction of the gas gap switch at a lower jet height. 1223123(2) Under repeated triggering, the ablation products on the inner wall of the first cavity accumulate, the surface roughness increases, the discharge path gradually deteriorates, resulting in the gradual deterioration of the triggering discharge performance of the first cavity, and the discharge time delay Δt0 between capacitors C1 and C2 increases. Under the effect of intense ablation along the surface arc current, the diameter of the second cavity nozzle gradually increases, the pressure difference between the inside and outside of the trigger cavity nozzle decreases, and the cumulative effect of the insulation material gas production capacity and arc energy utilization decreases, which leads to a decrease in the plasma jet characteristics parameters, causing a weakening of the distortion effect of the background electric field of the main gap of the switch, resulting in an increase in the breakdown time delay Δt1. By the end of the trigger life, breakdown delay Δt1 and on-time delay Δt2 increased by 0.67 and 1.1 times, respectively. And the diameter of the first and second trigger cavity nozzles increased to nearly 1.9 and 2.3 times, respectively. Δt0, Δt1, Δt2 can be used to characterize the degree of deterioration of the trigger first cavity, second cavity, and conduction performance, respectively. In practical applications, the threshold range in which the above characteristic quantities change can be detected to determine the superiority of the gas switch triggering performance and the trigger life stage. (3) Based on the strong correlation law between plasma jet height and gas switch trigger performance degradation, the plasma jet height is used as the predictor. The gas switch trigger life prediction model ARIMA(1, 1, 2) was established after ADF test, ACF and PACF parameters identification, the information criterion judgment and significance test. The number of remaining trigger life predictions for the model is 398. The predicted values are basically consistent with the experimental results, and the remaining trigger life prediction error is within 10%, which can well meet the requirements of gas switch trigger life prediction.
董冰冰, 郭志远. 气体间隙开关喷射等离子体触发性能劣化及剩余触发寿命预测研究[J]. 电工技术学报, 2024, 39(5): 1497-1509.
Dong Bingbing, Guo Zhiyuan. Study on Triggering Performance Degradation and Remaining Trigger Life Prediction of Gas Gap Switch Jet Plasma. Transactions of China Electrotechnical Society, 2024, 39(5): 1497-1509.
[1] 姜涛, 李雪, 李国庆, 等. 含多端柔性直流的交直流电力系统静态电压稳定域构建方法[J]. 电工技术学报, 2022, 37(7): 1746-1759. Jiang Tao, Li Xue, Li Guoqing, et al.A predictor-corrector algorithm for forming voltage stability region of hybrid AC/DC power grid with inclusion of VSC-MTDC[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1746-1759. [2] 束洪春, 代月, 安娜, 等. 基于线性回归的柔性直流电网纵联保护方法[J]. 电工技术学报, 2022, 37(13): 3213-3226, 3288. Shu Hongchun, Dai Yue, An Na, et al.Pilot protection method of flexible DC grid based on linear regression[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3213-3226, 3288. [3] 张磊, 葛健, 李志兵, 等. 特高压交流开关型可控避雷器控制系统设计[J]. 电网技术, 2020, 44(11): 4464-4469. Zhang Lei, Ge Jian, Li Zhibing, et al.Control system design of UHV AC switch type controllable arrester[J]. Power System Technology, 2020, 44(11): 4464-4469. [4] 余辉, 李国富, 刘赫, 等. 可控避雷器的触发型间隙方案研究[J]. 高电压技术, 2021, 47(8): 2791-2798. Yu Hui, Li Guofu, Liu He, et al.Research on trigger gap scheme of controllable surge arrester[J]. High Voltage Engineering, 2021, 47(8): 2791-2798. [5] 刘晓鹏, 董曼玲, 邓虎威, 等. 空气间隙击穿后放电通道内的气体运动特性[J]. 电工技术学报, 2021, 36(13): 2667-2674. Liu Xiaopeng, Dong Manling, Deng Huwei, et al.Movement characteristics of the gas in discharge channel after air gap breakdown[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2667-2674. [6] 董冰冰, 陶磊, 李志兵, 等. 机械式直流断路器换流支路用气体间隙开关方案及其诱导击穿特性[J]. 高电压技术, 2022, 48(12): 4863-4872. Dong Bingbing, Tao Lei, Li Zhibing, et al.A gas gap switch scheme for commutation branch of DC circuit breakers and its induced breakdown characteristics[J]. High Voltage Engineering, 2022, 48(12): 4863-4872. [7] 郭兴宇, 黄智慧, 梁德世, 等. 新型机电混合断路器及其电流转移过程分析[J]. 电工技术学报, 2022, 37(24): 6411-6419. Guo Xingyu, Huang Zhihui, Liang Deshi, et al.Analysis on novel electro-mechanical hybrid circuit breaker and its current commutation process[J]. Transactions of China Electrotechnical Society, 2022, 37(24): 6411-6419. [8] 李芳义, 乔光尧, 赵国亮, 等. 晶闸管型可控避雷器无源触发技术研究[J]. 电力电子技术, 2020, 54(7): 15-18. Li Fangyi, Qiao Guangyao, Zhao Guoliang, et al.Research on passive trigger technology of thyristor controllable arrester[J]. Power Electronics, 2020, 54(7): 15-18. [9] 袁佳歆, 陈鹤冲, 陈凡, 等. 一种快速响应直流限流器拓扑结构与参数设计[J]. 电工技术学报, 2021, 36(8): 1646-1657. Yuan Jiaxin, Chen Hechong, Chen Fan, et al.Topology and parameter design of a fast response DC current limiter[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1646-1657. [10] 宋心哲, 廖敏夫, 卢刚, 等. 三间隙激光触发真空开关触发特性研究[J]. 电工技术学报, 2023, 38(14): 3923-3929. Song Xinzhe, Liao Minfu, Lu Gang, et al.Research on triggering characteristics of triple-gap laser triggered vacuum switch[J]. Transactions of China Electrote-chnical Society, 2023, 38(14): 3923-3929. [11] 董冰冰, 陈子建, 陈维江, 等. 配电网用灵活控制特快速开关方案及其触发导通特性[J]. 高电压技术, 2022, 48(5): 1808-1816. Dong Bingbing, Chen Zijian, Chen Weijiang, et al.Scheme of flexible control very fast switch and its discharge characteristics for distribution network[J]. High Voltage Engineering, 2022, 48(5): 1808-1816. [12] 程显, 王振伟, 吕彦鹏, 等. 基于多孔隙触发的三电极场畸变开关设计与实验研究[J]. 电工技术学报, 2023, 38(24): 6807-6816. Cheng Xian, Wang Zhenwei, Lü Yanpeng, et al.Design and experiment study of three electrode field distortion switch based on multi-hole trigger[J]. Transactions of China Electrotechnical Society, 2023, 38(24): 6807-6816. [13] 张明, 李丁晨, 李传, 等. 离子风的应用研究进展[J]. 电工技术学报, 2021, 36(13): 2749-2766. Zhang Ming, Li Dingchen, Li Chuan, et al.Research progress in the application of ion wind[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2749-2766. [14] 董冰冰, 张泽霖, 李志兵, 等. 极低工作系数下SF6间隙开关喷射等离子体诱导击穿作用规律[J]. 高电压技术, 2022, 48(1): 348-357. Dong Bingbing, Zhang Zelin, Li Zhibing, et al.Induced breakdown law of plasma jet-triggered SF6 gap switch at very low operating coefficient[J]. High Voltage Engineering, 2022, 48(1): 348-357. [15] 王亚楠, 丁卫东, 程乐, 等. 毛细管型脉冲等离子体推力器研究现状综述[J]. 电工技术学报, 2018, 33(22): 5358-5370. Wang Yanan, Ding Weidong, Cheng Le, et al.A review of the current research situation on capillary based pulsed plasma thruster[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5358-5370. [16] 董冰冰, 郭志远, 文韬, 等. 两级沿面触发型气体开关等离子体喷射过程与触发导通规律[J]. 高电压技术, 2022, 48(11): 4656-4666. Dong Bingbing, Guo Zhiyuan, Wen Tao, et al.Development process of jet plasma of two-stage surface-triggered gas switch and its trigger conduction law[J]. High Voltage Engineering, 2022, 48(11): 4656-4666. [17] Dong Bingbing, Zhang Zelin, Xiang Nianwen, et al.Study on triggering characteristics and induced breakdown rules of SF6 gap switch plasma jets at extremely low working voltage[J]. IEEE Transactions on Plasma Science, 2022, 50(4): 873-882. [18] Li Rui, Li Xingwen, Jia Shenli, et al.Study of different models of the wall ablation process in capillary discharge[J]. IEEE Transactions on Plasma Science, 2010, 38(4): 1033-1041. [19] 黄东, 杨兰均, 霍鹏, 等. 基于毛细管放电的大气压等离子体射流喷射装置放电特性[J]. 高电压技术, 2016, 42(12): 3769-3774. Huang Dong, Yang Lanjun, Huo Peng, et al.Discharge characteristics of atmospheric plasma flow ejector based on capillary discharge[J]. High Voltage Engineering, 2016, 42(12): 3769-3774. [20] Huang Dong, Yang Lanjun, Huo Peng, et al.Study on the characteristics of a two gap capillary discharge[J]. Physics of Plasmas, 2015, 22(2): 023509. [21] 朱浩, 李志兵, 李晓昂, 等. 等离子体喷射触发型SF6间隙开关触发寿命试验研究[J]. 电网技术, 2021, 45(8): 3298-3304. Zhu Hao, Li Zhibing, Li Xiaoang, et al.Experimental study on trigger life of SF6 gap switch triggered by plasma jet[J]. Power System Technology, 2021, 45(8): 3298-3304. [22] 吴佳玮, 丁卫东, 韩若愚, 等. 大电流条件下气体火花开关电极烧蚀的研究进展[J]. 高电压技术, 2021, 47(9): 3367-3379. Wu Jiawei, Ding Weidong, Han Ruoyu, et al.Review of electrode erosion in a spark gap switch under large pulsed currents[J]. High Voltage Engineering, 2021, 47(9): 3367-3379. [23] 范超, 张血琴, 郭裕钧, 等. 绝缘材料表面污秽颗粒积聚规律研究[J]. 高压电器, 2022, 58(11): 212-220. Fan Chao, Zhang Xueqin, Guo Yujun, et al.Study on accumulation of contamination particles on surface of insulating materials[J]. High Voltage Apparatus, 2022, 58(11): 212-220. [24] 吴佳玮, 韩若愚, 周海滨, 等. 大电流气体火花开关聚四氟乙烯绝缘子绝缘劣化产物分析[J]. 电工技术学报, 2018, 33(2): 459-466. Wu Jiawei, Han Ruoyu, Zhou Haibin, et al.Insulation degradation products analysis of PTFE insulators in gas spark gap switch caused by high current and high energy arc influences[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 459-466. [25] 江进波, 沈骏峰, 杨文, 等. FLTD气体开关绝缘结构优化设计[J]. 高压电器, 2022, 58(7): 170-176. Jiang Jinbo, Shen Junfeng, Yang Wen, et al.Optimization design of insulation structure of FLTD gas switch[J]. High Voltage Apparatus, 2022, 58(7): 170-176. [26] Dong Bingbing, Guo Zhiyuan, Zhang Zelin.Action law and deterioration characteristics of trigger cavity of plasma-jet-triggered air-gap switch[J]. IEEE Transactions on Plasma Science, 2022, 50(11): 4693-4699. [27] 张浒. 时间序列短期预测模型研究与应用[D]. 武汉: 华中科技大学, 2013. Zhang Hu.The research and application of short-term forecasting model for time series[D]. Wuhan: Huazhong University of Science and Technology, 2013. [28] 陶耀东, 李宁. 基于ARIMA模型的工业锂电池剩余使用寿命预测[J]. 计算机系统应用, 2017, 26(11): 282-287. Tao Yaodong, Li Ning.Industrial lithium battery remaining useful life prediction based on the ARIMA model[J]. Computer Systems & Applications, 2017, 26(11): 282-287. [29] 王燕. 应用时间序列分析[M]. 北京: 中国人民大学出版社, 2005.