Thermodynamic Properties and Transport Coefficients of Post-Arc Nonequilibrium SF6 and C4F7N Plasmas
Wang Guanyu1, Zhang Boya1, Liu Wei2, Wang Wen3, Li Xingwen1
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China; 2. Power Science Research Institute State Grid Anhui Electric Power Co. Hefei 230022 China; 3. China Electric Power Research Institute Beijing 100192 China
Abstract:Switching arcs typically exhibit a strong non-equilibrium state at the critical moment of current interruption in the post-arc current zero region, which subsequently affects the current interruption performance of high-voltage switchgear. However, current research on switching arcs predominantly relies on the assumption of local thermodynamic equilibrium (LTE), making it challenging to accurately describe the post-arc decay process. To address this issue, this study investigates the non-equilibrium thermodynamic properties and transport coefficients of SF6 and C4F7N in the post-arc state. It compares the physical characteristics of the arc decay process of C4F7N under high-pressure conditions with those of SF6, providing fundamental parameters for the non-equilibrium arc modeling of both gases. Firstly, the two-temperature partition functions were calculated, and a model for solving the composition of non-equilibrium plasma was established based on the two-temperature mass action law. Secondly, various thermodynamic properties of the non-equilibrium plasma were computed based on the 2-T composition and partition functions. Finally, using the computed data, a system for solving the transport coefficients of non-equilibrium plasma was established based on the 2-T Chapman-Enskog theory. Through these computations, this work investigated the effects of non-equilibrium conditions on the composition and thermophysical parameters, and compared the differences in the impact of pressure and non-equilibrium conditions. The computational data for post-arc non-equilibrium SF6 and C4F7N plasmas indicate that, due to the first ionization energy of sulfur atoms (10.36 eV) being lower than that of fluorine atoms (17.42 eV), sulfur in the SF6 plasma will undergo significant ionization preferentially over fluorine at 6 000 K under the LTE assumption. However, in a plasma with a non-equilibrium degree (θ=Te/Th) of 4, fluorine atom ionization will dominate over sulfur near an electron temperature of 8 700 K; a similar phenomenon occurs in C4F7N. Additionally, the significant dissociation temperature of polyatomic particles in the non-equilibrium C4F7N plasma increases from 11 000 K to over 22 000 K, which is significantly higher than the 16 000 K observed in SF6 under the same conditions. Under conditions of θ=16~20, the mass density of non-equilibrium C4F7N can exceed that of SF6 by more than tenfold, indicating that the thermodynamic properties are significantly influenced by the non-equilibrium state. The impact of θ=2 on the electrical conductivity of C4F7N plasma is approximately equivalent to that of θ=5 on SF6, suggesting that the transport coefficients are primarily determined by the plasma composition and the intensity of interactions between particles. Therefore, complex large molecules are more sensitive to the influence of non-equilibrium conditions. The analysis of the computational data leads to the following conclusions: (1) The established non-equilibrium computational model yields results under LTE conditions that are generally consistent with other published data. Due to the complexity of C4F7N molecules, the effects of non-equilibrium phenomena are more pronounced in C4F7N compared to SF6. (2) The thermodynamic properties of non-equilibrium plasmas differ significantly from those under the LTE assumption, using the ρcp parameter under non-equilibrium conditions provides a more accurate assessment of the arc-extinguishing performance of gases. (3) Non-equilibrium conditions simultaneously alter the plasma's particle composition and collision intensity, resulting in complex nonlinear variations in transport properties as the degree of non-equilibrium changes. (4) Both increased pressure and higher degrees of non-equilibrium suppress chemical reactions; however, the difference lies in their impact on particle number density and particle energy.
汪冠宇, 张博雅, 刘伟, 王雯, 李兴文. 弧后非平衡态SF6与C4F7N等离子体的热动属性及输运系数[J]. 电工技术学报, 2025, 40(17): 5626-5641.
Wang Guanyu, Zhang Boya, Liu Wei, Wang Wen, Li Xingwen. Thermodynamic Properties and Transport Coefficients of Post-Arc Nonequilibrium SF6 and C4F7N Plasmas. Transactions of China Electrotechnical Society, 2025, 40(17): 5626-5641.
[1] 李辰辉, 褚继峰, 龙潇, 等. 基于弧触头接触振动特征分析的高压SF6断路器电寿命在线监测方法[J]. 电工技术学报, 2024, 39(15): 4883-4895. Li Chenhui, Chu Jifeng, Long Xiao, et al.Online monitoring method of electrical life of high voltage SF6 circuit breaker based on analysis of arcing contact vibration characteristics[J]. Transactions of China Electrotechnical Society, 2024, 39(15): 4883-4895. [2] 崔建, 孙帅, 张国钢, 等. 基于双温度磁流体电弧仿真改进Mayr电弧模型的特快速暂态过电压仿真方法[J]. 电工技术学报, 2024, 39(16): 5149-5161. Cui Jian, Sun Shuai, Zhang Guogang, et al.The very fast transient overvoltage simulation method based on two-temperature MHD arc simulation to improve Mayr arc model[J]. Transactions of China Elec-trotechnical Society, 2024, 39(16): 5149-5161. [3] Zhang Q, Liu J, Yan J D, et al.The modelling of an SF6 arc in a supersonic nozzle: II. current zero behaviour of the nozzle arc[J]. Journal of Physics D: Applied Physics, 2016, 49(33): 335501. [4] Dhotre M T, Ye Xiangyang, Linares F, et al.Multiobjective optimization and CFD simulation for a high-voltage circuit breaker[J]. IEEE Transactions on Power Delivery, 2012, 27(4): 2105-2112. [5] Petchanka A, Reichert F, Gonzalez J J, et al.Modelling of the deformation of PTFE-nozzles in a high voltage circuit breaker due to multiple inter-ruptions[J]. Journal of Physics D: Applied Physics, 2016, 49(13): 135201. [6] Rümpler C, Zacharias A, Chechare R B, et al.Coupling of magneto-hydrodynamics and structural models to predict wall deformation due to arcing[J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2023, 8: 343-353. [7] Li Xingwen, Zhao Hu, Murphy A B.SF6-alternative gases for application in gas-insulated switchgear[J]. Journal of Physics D Applied Physics, 2018, 51(15): 153001. [8] Guo Ze, Liu Shungui, Pu Yunjie, et al.Study of the arc interruption performance of CO2 gas in high-voltage circuit breaker[J]. IEEE Transactions on Plasma Science, 2019, 47(5): 2742-2751. [9] 崔兆轩, 林莘, 钟建英, 等. C4F7N/CO2混合气体特高压母线通流温升特性研究[J]. 电工技术学报, 2023, 38(9): 2491-2499. Cui Zhaoxuan, Lin Xin, Zhong Jianying, et al.Study on the temperature rise characteristics of C4F7N/CO2 mixed gas ultra high voltage bus[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2491-2499. [10] Zhang Boya, Zhou Ran, Wang Kai, et al.Arc interruption performance of C4F7N-CO2 mixture in a 126 kV disconnector[J]. IEEE Transactions on Power Delivery, 2022, 38(2): 1197-1207. [11] Bian Chenxi, He Baina, Lin Xin, et al.Research on interruption performance of environmentally friendly C4F7N mixed-gas-insulated switchgear[J]. Energies, 2022, 15(18): 6500. [12] 张博雅, 周然, 郝迈, 等. C4F7N混合气体在40.5kV断路器中的应用研究(一): 燃弧特性仿真与灭弧性能评估[J]. 中国电机工程学报, 2022, 42(23): 8750-8762. Zhang Boya, Zhou Ran, Hao Mai, et al.Research on application of C4F7N gas mixture in 40.5kV circuit breaker (part Ⅰ): simulation and evaluation of arc extinguishing performance[J]. Proceedings of the CSEE, 2022, 42(23): 8750-8762. [13] Korbel J, Ostrowski J, Stoller P, et al.Convective performance of C5-flouroketone-based (C5-FK) and C4-flouronitrile-based (C4-FN) gas mixtures and SF6[J]. Journal of Thermal Science and Engineering Applications, 2023, 15(1): 011002. [14] Hermosillo V F, Schirmer M, Irwin T, et al.Development of an SF6-free AC HV dead-tank circuit breaker rated 145 kV, 63 kA[C]//2023 IEEE Power & Energy Society General Meeting (PESGM), Orlando, FL, USA, 2023: 1-5. [15] 荣命哲, 吴翊, 杨飞, 等. 开关电弧电流零区非平衡态等离子体仿真研究现状[J]. 电工技术学报, 2017, 32(2): 1-12, 23. Rong Mingzhe, Wu Yi, Yang Fei, et al.Review on the simulation method of non-equilibrium arc plasma during current zero period in the circuit breaker[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 1-12, 23. [16] Wang Weizong, Yan J D, Rong Mingzhe, et al.Theoretical investigation of the decay of an SF6 gas-blast arc using a two-temperature hydrodynamic model[J]. Journal of Physics D: Applied Physics, 2013, 46(6): 065203. [17] Tanaka Y, Iijima T.Hybrid thermofluid modeling with LTE and non-LTE assumption for decaying molecular gas arcs[C]//2022 6th International Conference on Electric Power Equipment-Switching Technology (ICEPE-ST), Seoul, Republic of Korea, 2022: 93-98. [18] Eda S, Ogino Y, Asai S, et al.Non-equilibrium modeling of arc plasmas in the gas-metal arc-welding process[J]. Journal of Physics D: Applied Physics, 2021, 54(32): 325204. [19] Al-Mamun S A, Tanaka Y, Uesugi Y. Two-temperature two-dimensional non chemical equilibrium modeling of Ar-CO2-H2 induction thermal plasmas at atmospheric pressure[J]. Plasma Chemistry and Plasma Processing, 2010, 30(1): 141-172. [20] 石岩, 崔博源, 陈允, 等. 开关电弧非平衡态电导率的研究[J]. 高压电器, 2020, 56(2): 27-33. Shi Yan, Cui Boyuan, Chen Yun, et al.Study on non-equilibrium state conductivity of switching arc[J]. High Voltage Apparatus, 2020, 56(2): 27-33. [21] Zhang Xiaoning, Li Heping, Murphy A B, et al.Comparison of the transport properties of two-temperature argon plasmas calculated using different methods[J]. Plasma Sources Science and Technology, 2015, 24(3): 035011. [22] Guo Xiaoxue, Murphy A B, Li Xingwen.Thermo-dynamic properties and transport coefficients of two-temperature helium thermal plasmas[J]. Journal of Physics D: Applied Physics, 2017, 50(12): 125202. [23] 仲林林, 王逸凡, 顾琦. C4F7N气体电弧的辐射输运特性研究[J]. 电工技术学报, 2023, 38(19): 5316-5329. Zhong Linlin, Wang Yifan, Gu Qi.Study on radiation transport characteristics of C4F7N gaseous arc[J]. Transactions of China Electrotechnical Society, 2023, 38(19): 5316-5329. [24] Zhong Linlin, Wang Jiayu, Xu Jie, et al.Effects of buffer gases on plasma properties and arc decaying characteristics of C4F7N-N2 and C4F7N-CO2 arc plasmas[J]. Plasma Chemistry and Plasma Processing, 2019, 39(6): 1379-1396. [25] Nikjou V, Kebriaee A, Momeni M, et al.A model for determining thermodynamic and transport properties of electric arc plasmas at elevated pressures and temperatures and its validations[J]. The European Physical Journal D, 2023, 77(6): 119. [26] Boulos M I, Cressault Y, Fauchais P L, et al.Thermodynamic and transport properties of gases over the temperature range 300-30, 000 K[M]// Boulos M I, Fauchais P L, Pfender E. Handbook of Thermal Plasmas. Cham: Springer International Publishing, 2023: 1807-1921. [27] Cressault Y.Basic knowledge on radiative and transport properties to begin in thermal plasmas modelling[J]. AIP Advances, 2015, 5(5): 057112. [28] 李静, 荐雯, 曹云东, 等. SF6替代气体C4F7N/CO2喷口灭弧性能分析[J]. 高压电器, 2024, 60(9): 92-98. Li Jing, Jian Wen, Cao Yundong, et al.Arc interruption performance analysis of nozzle filled with C4F7N/CO2 gas mixture instead of SF6 gas[J]. High Voltage Apparatus, 2024, 60(9): 92-98. [29] Ding Can, Ding Qingchang, Wang Zhenyi, et al.Comparison of algorithms for predicting plasma physical parameters of SF6-Cu mixtures at local thermodynamic equilibrium state via machine learning[J]. AIP Advances, 2021, 11(11): 115102. [30] Li Xingwen, Guo Xiaoxue, Murphy A B, et al.Calculation of thermodynamic properties and transport coefficients of C5F10O-CO2 thermal plasmas[J]. Journal of Applied Physics, 2017, 122(14): 143302. [31] Zhang Boya, Xiong Jiayu, Chen Li, et al.Funda-mental physicochemical properties of SF6-alternative gases: a review of recent progress[J]. Journal of Physics D: Applied Physics, 2020, 53(17): 173001. [32] Wu Yi, Wang Chunlin, Sun Hao, et al.Properties of C4F7N-CO2 thermal plasmas: thermodynamic properties, transport coefficients and emission coefficients[J]. Journal of Physics D: Applied Physics, 2018, 51(15): 155206. [33] Wang Weizong, Rong Mingzhe, Wu Yi, et al.Thermodynamic and transport properties of two-temperature SF6 plasmas[J]. Physics of Plasmas, 2012, 19(8): 083506. [34] Wu Yi, Chen Zhexin, yang Fei, et al. Two-temperature thermodynamic and transport properties of SF6-Cu plasmas[J]. Journal of Physics D: Applied Physics, 2015, 48(41): 415205. [35] Wang Xiaohua, Gao Qingqing, Fu Yuwei, et al.Dominant particles and reactions in a two-temperature chemical kinetic model of a decaying SF6 arc[J]. Journal of Physics D Applied Physics, 2016, 49(10): 105502. [36] Zhong Linlin, Gu Qi, Wu Bingyu.Graphite production in two-temperature non-LTE plasmas of C4F7N and C5F10O mixed with CO2, N2, and O2 as eco-friendly SF6 replacements: a numerical study[J]. Plasma Processes and Polymers, 2021, 18(8): 2100036. [37] Zhong Linlin, Baheti B, Wu Qi.Particle condensation in two-temperature (2T) arc plasmas of various SF6 replacements[J]. Plasma Chemistry and Plasma Processing, 2024, 44(5): 1867-1882. [38] Guo Xiaoxue, Li Xingwen, Murphy A B, et al.Calculation of thermodynamic properties and transport coefficients of CO2-O2-Cu mixtures[J]. Journal of Physics D: Applied Physics, 2017, 50(34): 345203. [39] Gleizes A, Chervy B, Gonzalez J J.Calculation of a two-temperature plasma composition: bases and application to SF6[J]. Journal of Physics D: Applied Physics, 1999, 32(16): 2060-2067. [40] McBride B J, Gordon S. Computer program for calculating and fitting thermodynamic functions[R]. Cleveland: NASA, 1992. [41] Colombo V, Ghedini E, Sanibondi P.Thermodynamic and transport properties in non-equilibrium argon, oxygen and nitrogen thermal plasmas[J]. Progress in Nuclear Energy, 2008, 50(8): 921-933. [42] Devoto R S.Simplified expressions for the transport properties of ionized monatomic gases[J]. Physics of Fluids, 1967, 10(10): 2105-2112. [43] Rat V, André P, Aubreton J, et al.Transport properties in a two-temperature plasma: theory and application[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2001, 64(2): 026409. [44] Colombo V, Ghedini E, Sanibondi P.Two-temperature thermodynamic and transport properties of argon-hydrogen and nitrogen-hydrogen plasmas[J]. Journal of Physics D: Applied Physics, 2009, 42(5): 055213. [45] Zhang Xiaoning, Li Heping, Murphy A B, et al.A numerical model of non-equilibrium thermal plasmas. I. transport properties[J]. Physics of Plasmas, 2013, 20(3): 033508. [46] CIGRE WG A3.41. Current interruption in SF6-free switchgear[R]. Paris: CIGRE, 2022. [47] Murphy A B, Tam E.Thermodynamic properties and transport coefficients of arc lamp plasmas: argon, krypton and xenon[J]. Journal of Physics D: Applied Physics, 2014, 47(29): 295202. [48] 西安交通大学. 特种电气技术研究中心电弧物性参数数据库[DB/OL]. (2024-08-12)[2024-08-22]. https://aet.xjtu.edu.cn/sjxzzx1/dhwxcs/zlmd.htm. [49] Devoto R S.Transport coefficients of ionized argon[J]. Physics of Fluids, 1973, 16(5): 616-623. [50] 李祎, 张晓星, 傅明利, 等. 环保绝缘气体C4F7N研究及应用进展Ⅰ: 绝缘及电、热分解特性[J]. 电工技术学报, 2021, 36(17): 3535-3552. Li Yi, Zhang Xiaoxing, Fu Mingli, et al.Research and application progress of eco-friendly gas insulating medium C4F7N, part Ⅰ: insulation and electrical, thermal decomposition properties[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3535-3552. [51] Chen Li, Zhang Boya, Li Xingwen, et al.Decomposition pathway of C4F7N gas considering the participation of ions[J]. Journal of Applied Physics, 2020, 128(14): 143303. [52] Chen Li, Zhang Boya, Yang Tao, et al.Thermal decomposition characteristics and kinetic analysis of C4F7N/CO2 gas mixture[J]. Journal of Physics D: Applied Physics, 2020, 53(5): 055502. [53] Zhong Linlin, Murphy A B, Wang Xiaohua, et al.Calculation of two-temperature plasma composition: I. mass action law methods and extremum searching methods[J]. Journal of Physics D: Applied Physics, 2020, 53(6): 065202. [54] 柯学, 王安阳, 刘伟, 等. CF3SO2F及其混合气体电弧等离子体粒子组分与物性参数计算[J]. 电工技术学报, 2024, 39(19): 6145-6161. Ke Xue, Wang Anyang, Liu Wei, et al.Calculation of particle composition and physical property parameters of arc plasma particles of CF3SO2F and its gas mixtures[J]. Transactions of China Electrotechnical Society, 2024, 39(19): 6145-6161.